Many applications involving lab-on-a-chip (LOC) devices are prevented from entering the market because of difficulties to achieve mass production and impart suitable properties allowing long-term storage. To integrate biosensors on these microfluidic chips, one of the main restrictions is the fabrication and stability of the molecular modifications that must be performed on the surfaces of the sensors for a given application. The complexity of the problem increases exponentially when the LOC integrates several of these sensors. Here we present a system based on laminar co-flow to perform an on-chip selective surface bio-functionalization of LOC-integrated sensors. This method has the advantage that the surface modification protocols are performed in situ before analyte detection. This approach reduces the burdens during LOC fabrication, keeping the required reagents stored outside of the detection structure in suitable wet conditions. The proof of concept is demonstrated through an optical characterization followed by electronic detection based on a novel differential impedance measurement setup. The system can be easily scaled to incorporate several sensors with distinct biosensing targets in a single chip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.