The effect of angiotensin II on cultured neonatal rat heart myocytes was studied by measuring changes in cell length, the magnitude and kinetics of the calcium current, and changes in cyclic adenosine 3',5'-monophosphate (cAMP) and phosphoinositide metabolism. Spontaneous beating frequency of multicellular networks was increased by angiotensin II with a maximal increase of 100% above control values at concentrations of 5 nM or greater. The half-maximal response occurred at 0.6 nM angiotensin II. Shortening amplitude, shortening velocity, and relaxation velocity decreased concomitantly with the increasing contractile rate. In voltage-clamped single myocytes, both steady-state and transient components of the calcium current were increased by the addition of angiotensin II. Angiotensin II had no effect on either control or isoproterenol-stimulated adenylate cyclase activity in myocyte membranes. Neither the basal levels nor the isoproterenol-stimulated cAMP accumulation in intact cells was affected by addition of hormone. In myocytes labeled with [3H]inositol, angiotensin II stimulated the formation of [3H]inositol phosphates. One minute after addition of 5 nM angiotensin II, inositol monophosphate and inositol bisphosphate levels were increased to 73% and 99%, respectively, above control values and remained elevated at 10 minutes. Inositol trisphosphate levels were not significantly different from control values at either time point. Nifedipine (10 microM) had no effect on angiotensin II-induced increases in [3H]inositol phosphates. We conclude that the increases in both spontaneous beating rate and calcium current in angiotensin II-stimulated cultured neonatal heart cells are not dependent on cAMP or inositol trisphosphate levels but may involve sustained phosphoinositide hydrolysis.
The muscarinic cholinergic agonist, carbachol, and pertussis toxin were used to examine the functional status of the guanine nucleotide-binding protein that inhibits adenylate cyclase (Gi) in cultured neonatal rat heart myocytes. The isoproterenol stimulation of adenylate cyclase activity in myocyte membranes and adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in intact cells (4 days in culture) were insensitive to carbachol (0.1 mM). However, in cells cultured for 11 days, carbachol (0.1 mM) inhibited isoproterenol-stimulated cAMP accumulation by 30%. Angiotensin II (ANG II) was also found to inhibit isoproterenol-stimulated cAMP accumulation in day 11 cells in a dose-dependent manner. Pertussis toxin treatment reversed the inhibitory effects of both ANG II and carbachol, suggesting a role for Gi in the process. Carbachol binding to membranes from day 4 cells was relatively insensitive to guanine nucleotides when compared with binding to membranes from day 11 or adult cells. Furthermore, pertussis toxin-mediated 32P incorporation into a 39- to 41-kDa substrate in day 11 membranes was increased 3.2-fold over that measured in day 4 membranes. These findings support the view that, although Gi is expressed, it is nonfunctional in 4-day-old cultured neonatal rat heart myocytes and acquisition of functional Gi is dependent on culture conditions. Furthermore, the ANG II receptor can couple to Gi in heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.