The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3′untranslated regions (3′UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3′UTRs of genes often contain single nucleotide polymorphisms (SNPs), which can change the binding affinity for target miRNAs leading to dysregulated gene expression. Accumulated data suggest that these SNPs can be associated with various human pathologies (cancer, diabetes, neuropsychiatric disorders, and cardiovascular diseases) by disturbing the interaction of miRNAs with their MREs located in mRNA 3′UTRs. Numerous data show the role of SNPs in 3′UTR MREs in individual drug susceptibility and drug resistance mechanisms. In this review, we brief the data on such SNPs focusing on the most rigorously proven cases. Some SNPs belong to conventional genes from the drug-metabolizing system (in particular, the genes coding for cytochromes P450 (CYP 450), phase II enzymes (SULT1A1 and UGT1A), and ABCB3 transporter and their expression regulators (PXR and GATA4)). Other examples of SNPs are related to the genes involved in DNA repair, RNA editing, and specific drug metabolisms. We discuss the gene-by-gene studies and genome-wide approaches utilized or potentially utilizable to detect the MRE SNPs associated with individual response to drugs.
Currently, the detection of the allele asymmetry of gene expression from RNA-seq data or the transcription factor binding from ChIP-seq data is one of the approaches used to identify the functional genetic variants that can affect gene expression (regulatory SNPs or rSNPs). In this study, we searched for rSNPs using the data for human pulmonary arterial endothelial cells (PAECs) available from the Sequence Read Archive (SRA). Allele-asymmetric binding and expression events are analyzed in paired ChIP-seq data for H3K4me3 mark and RNA-seq data obtained for 19 individuals. Two statistical approaches, weighted z-scores and predicted probabilities, were used to improve the efficiency of finding rSNPs. In total, we identified 14,266 rSNPs associated with both allele-specific binding and expression. Among them, 645 rSNPs were associated with GWAS phenotypes; 4746 rSNPs were reported as eQTLs by GTEx, and 11,536 rSNPs were located in 374 candidate transcription factor binding motifs. Additionally, we searched for the rSNPs associated with gene expression using an SRA RNA-seq dataset for 281 clinically annotated human postmortem brain samples and detected eQTLs for 2505 rSNPs. Based on these results, we conducted Gene Ontology (GO), Disease Ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and constructed the protein–protein interaction networks to represent the top-ranked biological processes with a possible contribution to the phenotypic outcome.
Cardiovascular diseases (CVDs), the leading cause of death worldwide, generally refer to a range of pathological conditions with the involvement of the heart and the blood vessels. A sizable fraction of the susceptibility loci is known, but the underlying mechanisms have been established only for a small proportion. Therefore, there is an increasing need to explore the functional relevance of trait-associated variants and, moreover, to search for novel risk genetic variation. We have reported the bioinformatic approach allowing effective identification of functional non-coding variants by integrated analysis of genome-wide data. Here, the analysis of 1361 previously identified regulatory SNPs (rSNPs) was performed to provide new insights into cardiovascular risk. We found 773,471 coding co-segregating markers for input rSNPs using the 1000 Genomes Project. The intersection of GWAS-derived SNPs with a relevance to cardiovascular traits with these markers was analyzed within a window of 10 Kbp. The effects on the transcription factor (TF) binding sites were explored by DeFine models. Functional pathway enrichment and protein– protein interaction (PPI) network analyses were performed on the targets and the extended genes by STRING and DAVID. Eighteen rSNPs were functionally linked to cardiovascular risk. A significant impact on binding sites of thirteen TFs including those involved in blood cells formation, hematopoiesis, macrophage function, inflammation, and vasoconstriction was found in K562 cells. 21 rSNP gene targets and 5 partners predicted by PPI were enriched for spliceosome and endocytosis KEGG pathways, endosome sorting complex and mRNA splicing REACTOME pathways. Related Gene Ontology terms included mRNA splicing and processing, endosome transport and protein catabolic processes. Together, the findings provide further insight into the biological basis of CVDs and highlight the importance of the precise regulation of splicing and alternative splicing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.