The analysis of the 3D model structure of the ternary complex of recombinant formate dehydrogenase from soya Glycine max (EC 1.2.1.2., SoyFDH) with bound NAD+ and an inhibitor azide ion revealed the presence of hydrophobic Phe290 in the coenzyme-binding domain. This residue should shield the enzyme active site from solvent. On the basis of the alignment of plant FDHs sequences, Asp, Asn and Ser were selected as candidates to substitute Phe290. Computer modeling indicated the formation of two (Ser and Asn) or three (Asp) new hydrogen bonds in such mutants. The mutant SoyFDHs were expressed in Escherichia coli, purified and characterized. All amino acid substitutions increased K(м)(HCOO-) from 1.5 to 4.1-5.0 mM, whereas the K(м)(NAD+) values remained almost unchanged in the range from 9.1 to 14.0 μM, which is close to wt-SoyFDH (13.3 μM). The catalytic constants for F290N, F290D and F290S mutants of SoyFDH equaled 2.8, 5.1 and 4.1 s⁻¹, respectively; while that of the wild-type enzyme was 2.9 s⁻¹. The thermal stability of all mutant SoyFDHs was much higher compared with the wild-type enzyme. The differential scanning calorimetry data were in agreement with the results of thermal inactivation kinetics. The mutations F290S, F290N and F290D introduced into SoyFDH increased the T(m) values by 2.9°C, 4.3°C and 7.8°C, respectively. The best mutant F290D exhibited thermal stability similar to that of FDH from the plant Arabidopsis thaliana and exceeded that of the enzymes from the yeast Candida boidinii and the bacterium Moraxella sp. C1.
Previous experiments on substitution of the residue Phe290 to Asp, Asn and Ser in NAD(+)-dependent formate dehydrogenase from soya Glycine max (SoyFDH) showed important role of the residue in enzyme thermal stability and catalytic properties (Alekseeva et al. Prot. Eng. Des. Sel., 2012a; 25: :781-88). In this work, we continued site-directed mutagenesis experiments of the Phe290 and the residue was changed to Ala, Thr, Tyr, Glu and Gln. All amino acid changes resulted in increase of catalytic constant from 2.9 to 3.5-4.7 s(-1). The substitution Phe290Ala led to KM (NAD+) decrease from 13.3 to 8.6 μM, and substitutions Phe290Tyr and Phe290Glu resulted in decrease and increase of KM (HCOO-) from 1.5 to 0.9 and -2.9 mM, respectively. The highest improvement of catalytic properties was observed for SoyFDH Phe290Ala which showed 2-fold higher catalytic efficiency with both substrates. Stability of mutants was examined by study of thermal inactivation kinetics and differential scanning calorimetry (DSC). All five amino acids provided increase of thermal stability of mutant SoyFDH in comparison with wild-type enzyme. Mutant SoyFDH Phe290Glu showed the highest improvement-the stabilization effect was 43 at 56°C. The DSC data agree with results of thermal inactivation kinetics. Substitutions Phe290Tyr, Phe290Thr, Phe290Gln and Phe290Glu provided Tm value increase 0.6°-6.6°. SoyFDH Phe290Glu and previously prepared SoyFDH Phe290Asp show similar thermal stability as enzymes from Candida boidinii and Mycobacterium vaccae N10 and have higher catalytic efficiency with NAD(+) compared with all described FDHs. Therefore, these mutants are very perspective enzymes for coenzyme regeneration in processes of chiral synthesis with dehydrogenases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.