a b s t r a c tSupercritical fluid extraction (SFE) offers an alternative method to conventional extraction of fatty acids. SFE was developed for analytical application in the mid-1980s in response to the desire to reduce the use of organic solvents in the laboratory environment, and it is now becoming a standard method for the extraction, fractionation, refinement and deodorization of lipids or essential oils containing sample matrices at the industrial scale. This paper reviews applications of supercritical fluid technology in fatty acid/lipid extraction using carbon dioxide. Carbon dioxide is an ideal supercritical fluid because of its environmentally benign, non-toxic, non-flammable, non-polluting, recoverable characteristics and its ability to solubilise lipophilic substances. A summary of commercial applications and examples of recent developments of SFE in the food processing industry are also reviewed.
Different bioactive flavonoid compounds including catechin, epicatechin, rutin, myricetin, luteolin, apigenin and naringenin were obtained from spearmint (Mentha spicata L.) leaves by using conventional soxhlet extraction (CSE) and supercritical carbon dioxide (SC-CO2) extraction at different extraction schemes and parameters. The effect of different parameters such as temperature (40, 50 and 60 °C), pressure (100, 200 and 300 bar) and dynamic extraction time (30, 60 and 90 min) on the supercritical carbon dioxide (SC-CO2) extraction of spearmint flavonoids was investigated using full factorial arrangement in a completely randomized design (CRD). The extracts of spearmint leaves obtained by CSE and optimal SC-CO2 extraction conditions were further analyzed by high performance liquid chromatography (HPLC) to identify and quantify major bioactive flavonoid compounds profile. Comparable results were obtained by optimum SC-CO2 extraction condition (60 °C, 200 bar, 60 min) and 70% ethanol soxhlet extraction. As revealed by the results, soxhlet extraction had a higher crude extract yield (257.67 mg/g) comparing to the SC-CO2 extraction (60.57 mg/g). Supercritical carbon dioxide extract (optimum condition) was found to have more main flavonoid compounds (seven bioactive flavonoids) with high concentration comparing to the 70% ethanol soxhlet extraction (five bioactive flavonoids). Therefore, SC-CO2 extraction is considered as an alternative process compared to the CSE for obtaining the bioactive flavonoid compounds with high concentration from spearmint leaves.
The common industrial starches are typically derived from cereals (corn, wheat, rice, sorghum), tubers (potato, sweet potato), roots (cassava), and legumes (mung bean, green pea). Sago (Metroxylon sagu Rottb.) starch is perhaps the only example of commercial starch derived from another source, the stem of palm (sago palm). Sago palm has the ability to thrive in the harsh swampy peat environment of certain areas. It is estimated that there are about 2 million ha of natural sago palm forests and about 0.14 million ha of planted sago palm at present, out of a total swamp area of about 20 million ha in Asia and the Pacific Region, most of which are under-or nonutilized. Growing in a suitable environment with organized farming practices, sago palm could have a yield potential of up to 25 tons of starch per hectare per year. Sago starch yield per unit area could be about 3 to 4 times higher than that of rice, corn, or wheat, and about 17 times higher than that of cassava. Compared to the common industrial starches, however, sago starch has been somewhat neglected and relatively less attention has been devoted to the sago palm and its starch. Nevertheless, a number of studies have been published covering various aspects of sago starch such as molecular structure, physicochemical and functional properties, chemical/physical modifications, and quality issues. This article is intended to piece together the accumulated knowledge and highlight some pertinent information related to sago palm and sago starch studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.