At present, in order to increase the weight efficiency of parts and structures of promising aircraft and rocket-space vehicles, various types of additive technologies and topological optimization methods are being actively introduced. Their purpose is a significant reduction in time and financial costs in the manufacture and creation of fundamentally new geometric solutions. The article considers approaches to selecting the geometric parameters of the strength elements of the flight vehicle body made of a metal-matrix composite material based on VT6 titanium alloy, reinforced with a finely dispersed silicon carbide powder, which is produced by direct laser growth technology. On the basis of numerical simulation, the dependences of the metal-matrix composite material physicomechanical and thermophysical characteristics on the volume fraction of silicon carbide have been determined. It was found that the use of a metal-matrix composite material and the optimization of geometric parameters with adaptation to the direct laser growth technology allows reducing the weight of the strength element of the flight vehicle body by more than 30% (depending on the overall dimensions).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.