While advances in neuroscience are helping to improve many aspects of human life, inequalities exist in this field between Africa and more scientifically-advanced continents. Many African countries lack the infrastructure and appropriately-trained scientists for neuroscience education and research. Addressing these challenges would require the development of innovative approaches to help improve scientific competence for neuroscience across the continent. In recent years, science-based non-profit organisations (NPOs) have been supporting the African neuroscience community to build state-of-the-art scientific capacity for sustainable education and research. Some of these contributions have included: the establishment of training courses and workshops to introduce African scientists to powerful-yet-cost-effective experimental model systems; research infrastructural support and assistance to establish research institutes. Other contributions have come in the form of the promotion of scientific networking, public engagement and advocacy for improved neuroscience funding. Here, we discuss the contributions of NPOs to the development of neuroscience in Africa.
The distribution of M and S molecular forms of Anopheles gambiae sensu stricto across Nigeria was determined. The molecular form of 40 to 45 specimens per locality from 9 localities was determined using mostly the same specimens from our recent study of genetic differentiation of A. gambiae across Nigeria (Onyabe & Conn, 2001). These samples were previously genotyped at 10 microsatellite loci, 5 located within chromosome inversions and 5 outside inversions. Both molecular forms occurred throughout the country, with no apparent relationship to the ecological transition from dry savannah in the north to humid forest in southern Nigeria. In all localities, however, 1 form or the other occurred virtually exclusively. No hybrids between forms were found. Across all loci, F(ST) values were as high within molecular forms as between forms. Regardless of molecular form, F(ST) values calculated across loci within inversions were much higher (range 0.0016 to 0.1988) than those calculated across loci outside inversions (range -0.0035 to 0.0260). Genetic distance was not significantly correlated with geographical distance within either form (P> 0.05). These observations suggest that, in addition to partial reproductive barriers between molecular forms, selection is a major factor shaping genetic differentiation of A. gambiae across Nigeria.
BackgroundTsetse flies are vectors of trypanosomes, parasites that cause devastating disease in humans and livestock. In the course of vector control programmes it is necessary to know about the Glossina species present in the study area, the population dynamics and the genetic exchange between tsetse fly populations.ResultsTo achieve an overview of the tsetse fly diversity in Nigeria and at the Nigeria-Cameroon border, tsetse flies were trapped and collected between February and March 2014 and December 2016. Species diversity was determined morphologically and by analysis of Cytochrome C Oxidase SU1 (COI) gene sequences. Internal transcribed spacer-1 (ITS-1) sequences were compared to analyse variations within populations. The most dominant species were G. m. submorsitans, G. tachinoides and G. p. palpalis. In Yankari Game Reserve and Kainji Lake National Park, G. submorsitans and G. tachinoides were most frequent, whereas in Old Oyo National Park and Ijah Gwari G. p. palpalis was the dominant species. Interestingly, four unidentified species were recorded during the survey, for which no information on COI or ITS-1 sequences exists. G. p. palpalis populations showed a segregation in two clusters along the Cameroon-Nigerian border.ConclusionsThe improved understanding of the tsetse populations in Nigeria will support decisions on the scale in which vector control is likely to be more effective. In order to understand in more detail how isolated these populations are, it is recommended that further studies on gene flow be carried out using other markers, including microsatellites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.