An indole derivative umifenovir (Arbidol) is one of the most widely used antiviral drugs for the prevention and treatment of COVID-19 and some other viral infections. The purpose of the present study was to shed light on the transformation processes of umifenovir in municipal wastewater, including disinfection with active chlorine, as well as to assess the levels of the antiviral drug and its metabolites entering and accumulating in natural reservoirs under conditions of the SARS-CoV-2 pandemic. The combination of high-performance liquid chromatography with electrospray ionization high-resolution mass-spectrometry and inductively coupled plasma mass spectrometry was used for tentative identification and quantification of umifenovir and its transformation products in model reaction mixtures and real samples of wastewater, river water, biological sludge and bottom sediments taken at the wastewater treatment plant in Arkhangelsk, a large cultural and industrial center at the Russian North. Laboratory experiments allowed identifying fifteen bromine-containing transformation products, forming at the initial stages of the chlorination and fourteen classic volatile and semi volatile disinfection by-products with bromoform as the dominant one. Chlorinated derivatives are only the minor disinfection by-products forming by substitution of alkylamine group in the aromatic ring. The schemes of umifenovir transformation in reactions with dissolved oxygen and sodium hypochlorite are proposed. Two established primary transformation products formed by oxidation of the thioether group to sulfoxide and elimination of thiophenol were detected in noticeable concentrations in the wastewater together with their precursor. The level of umifenovir reached 1.3 mg kg
−1
in the sludge and municipal wastewater treat contained 1 μg L
−1
of that drug, while its removal during biological wastewater treatment was about 40%. Pronounced accumulation of umifenovir and its transformation products in biological sludge and bottom sediments of natural reservoirs may be a source of the future secondary pollution of the environment.
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the study of lignin is still extremely limited due to its low ionization efficiency. We have developed an approach for obtaining high-intensity MALDI mass spectra of lignin, based on the use of ionic liquids as matrices. Thirty-two ionic liquids consisting of large nitrogen-containing cations and anions of aromatic acids, traditionally used as crystalline matrices, were tested. It was established that ionic liquids based on N,N-diisopropyl-N-ethylammonium, N-isopropyl-N-methyl-N-tert-butylammonium, 3-aminoquinolinium, pyridinium, and 1-methylimidazolium cations and anions of ferulic, α-cyanohydroxycinnamic, and 2,5-dihydroxybenzoic acids as MALDI matrices provided high efficiency of lignin desorption/ionization with generation of singly charged protonated molecules of its oligomers. The use of such matrices in combination with the MALDI quadrupole ion trap-time-of-flight technique allows high-intensity mass spectra of lignin to be obtained without interferences from the matrix in the molecular weight range up to 3 kDa, adequately reflecting the molecular mass characteristics of lignin preparations. Using ionic liquid matrices, MS and MS MALDI mass spectra of lignins for various precursor ions were first obtained, including in the region of large (> 2 kDa) molecular weights. Differences in tandem mass spectra of coniferous and deciduous lignins, reflecting the structural features of corresponding oligomers were demonstrated. Graphical abstract ᅟ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.