Lubrication of contacting and sliding surfaces in MEMS (microelectromechanical systems) is particularly challenging because of the predominance of surface forces at the microscale. The current paper explores the possibility of using liquid lubrication in this application. Measurements of friction and lubricant film thickness have been made for liquid lubricants of different viscosities, including low viscosity silicone oil, hexadecane, squalane, and water. Testing was carried out using a newly developed MEMS tribometer in which a rotating silicon disk is loaded against a stationary silicon disk. Two different test setups were used: one where both disks are flat, and the other where the stationary disk is structured as in a thrust pad bearing. In all tests the disks were fully submerged in the lubricant. With the flat-on-patterned disk combination, the variation of friction with rotation speed was found to follow classical Stribeck curves for all the lubricants tested. The friction at high speeds also decreased with increasing normal load, in accordance with hydrodynamic lubrication theory. For the least viscous lubricants, it was found that the hydrodynamic friction coefficients remained relatively low even at higher speeds. In particular, for water the friction coefficient for water was around 0.1 at 10,000 rpm. However, boundary friction was found to be unacceptably high at low speeds where there was insufficient lubricant entrainment. The experimental results have been compared with a finite difference solution of Reynolds equation and reasonable agreement is seen between theory and experiment. The results indicate that liquid lubrication is potentially an effective means of lubricating MEMS components with high levels of sliding.
Low viscosity fluids could provide reliable lubrication for certain microelectromechanical system's (MEMS) applications where high-sliding speeds and/or high sliding distances occur. However, while the use of low viscosity fluids leads to reduced hydrodynamic friction, high boundary friction can be a significant issue at low entrainment speeds. This article describes a series of tests of low viscosity fluids, blended with a friction modifier additive so as to provide a combination of both low hydrodynamic and low boundary friction at MEMS scales. The low viscosity fluids tested were hexadecane, low viscosity silicone oil, toluene and water. With the exception of water, the addition of the organic friction modifier octadecylamine to all these lubricating fluids produced a significant reduction in boundary friction. For a MEMS contact lubricated with silicone oil for instance, boundary friction was reduced from 0.5 to close to 0.05. The presence of the amine dissolved in the toluene had the effect of reducing boundary friction from 0.75 to 0.55; this was further reduced to 0.25 after the specimens had been immersed in the toluene-additive blend for 48 h. A watersoluble additive, diethylamine, was added to de-ionized water, at 0.1% by weight concentration. Although an initial reduction in boundary friction was observed (0.45-0.25), under these conditions the rapid onset of severe wear negated these effects. It is suggested that corrosion of silicon by water, followed by abrasion, is the cause of this accelerated wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.