Wireless LANs (WLANs) have edged into numerous mobile and wireless users' daily experience worldwide as a mainstream connectivity solution for a broad range of applications. Even though WLANs offer very high channel bandwidth, they show long network-layer handoff latency. This is a restraining factor for mobile clients using interactive multimedia applications such as voice over IP (VoIP) or video streaming. This paper presents an 802.11-dependent fast IP handoff method which quickly restores IP connectivity for mobile clients running next generation WLAN applications such as Voice over WLANs (VoWLAN). This method outperforms other existing proposed IP mobility solutions in 802.11 WLANs as verified from real performance testing, while introduces insignificant compulsory additions to the existing 802.11 wireless LAN framework.
One of the most critical issues in introducing Wireless LAN (WLAN) real-time and delay sensitive applications, such as Voice over IP (VoIP), is guaranteeing IP service continuation during inter-subnet Basic Service Set (BSS) transitions. Even though WLANs offer very high channel bandwidth, they exhibit long network-layer handoff latency. This is a restraining factor for mobile clients using interactive multimedia applications such as VoIP or video streaming. In a previous work, we presented a novel fast and efficient IP mobility solution, called "IP-IAPP", which offers constant IP connectivity to the 802.11 mobile users and successfully preserves their ongoing sessions, even during subnet handoffs (fast recovery of active connections). It is an 802.11-dependent IP mobility solution, which accelerates the network reconfiguration phase after subnet handoffs and significantly reduces the IP handoff latency. It restores L3 connectivity almost simultaneously to the L2 connectivity after a subnet handoff, due to a zero-delay movement detection method. As a result, even the most demanding next generation WLAN applications such as Voice over WLAN (VoWLAN) suffer insignificant disruption. In this paper we present an improved version of the IP-IAPP mobility mechanism (new optimized protocol procedures). Certain extensions have also been incorporated to the initial proposal, for the provision of more advanced services: (a) secure inter-AP IP-IAPP communications, (b) zero patching on the clients s/w, and (c) support of clients which use a dynamic IP address. Performance measurements out of further and more complex testing verify that the proposed method outperforms other existing mobility solutions, and still introduces the lesser imperative amendments to the existing 802.11 wireless LAN framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.