Abstract. The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90 • particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.Correspondence to: U. Mall (mall@linmpi.mpg.de) Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath) The instrumentThe RAPID spectrometer (Research with Adaptive Particle Imaging Detectors), described in detail by Wilken et al. (1995), is an advanced particle detector for the analysis of suprathermal plasma distributions in the energy range from 20-400 keV for electrons, 30 keV-1500 keV for hydrogen, and 10 keV/nucleon-1500 keV for heavier ions. Innovative detector concepts, in combination with pinhole acceptance, allow for the measurement of angular distributions over a range of 180 • in the polar angle for electrons and ions. Identification of the ion species is based on a two-dimensional analysis of the particle's velocity and energy. Electrons are identified by the well-known energy-range relationship. Table 1 list the main parameters of the RAPID instrument.The energy signals in RAPID are analyzed in 8 bit ADCs. With a mapping process the 256 channels are reduced to 8 channels in the case of the ion sensor and into 9 channels in the case of the electron sensor. The resulting energy channel limits are listed in Table 2.
Multi-instrument data sets from the ground and satellites at both low and high altitude have provided new results concerning substorm onset and its source region in the magnetosphere. Twenty-six out of 37 substorm onset events showed evidence of azimuthally spaced auroral forms (AAFs) prior to the explosive poleward motion associated with optical substorm onset. The azimuthal wavelengths associated with these onsets were found to range between 132 and 583 km with a mean value of 307 _+ 115 km. The occurrence rate increased with decreasing wavelength down to a cutoff wavelength near 130 km. AAFs can span 8 hours of local time prior to onset and generally propagate eastward in the morning sector. Onset itself is, however, more localized spanning only about 1 hour local time. The average location of the peak intensity lbr 80 onsets was 65.9 + 3.5 CGMIat, 22.9 _+ 1.2 Mlt, whereas the average location of the AAF onsets was at 63.8 _+ 3.3 CGMIat, 22.9 _+ 1.1 Mlt. AAF onsets occur during time periods when the solar wind pressure is relatively high. These low-latitude wavelike onsets appear as precursors in the form of long-period magnetic pulsations (Pc 5 band) and frequently occur on the equatorward portion of the double oval distribution. AAFs brighten in conjunction with substom onset leading to the conclusion that they are a growth phase activity causally related to substorm onset. Precursor activity associated with these AAFs is also seen near geosynchronous orbit altitude and examples show the relationship between the various instrumental definitions of substorm onset. The implied mode number (30 to 135) derived from this work is inconsistent with cavity mode resonances but is consistent with a modified flute/ballooning instability which requires azimuthal pressure gradients. It is suggested that this instability exists in growth phase but that an additional factor exists in the premidnight sector which results in an explosive onset. The extended source region 'and the distance to the open-closed field line region constrain reconnection theory and local mechanisms for substom onset. It is demonstrated that multiple onset substorms can exist for which localized dipolarizations and the Pi 2 occur simultaneously with tail stretching existing elsewhere. Further, the tail can be less stretched at geosynchronous orbit during the optical auroral onset than during the precursor pseudobreakups. These pseudobreakups can be initiated by auroral streamers which originate at the most poleward set of arc systems and drift to the more equatorward main UV oval. Observations are presented of these AAFs in conjunction with low-and high-altitude particle and magnetic field data. These place the activations at the interface between dipolar and taillike field lines probably near the peak in the cross-tail current. These onsets are put in the context of a new scenario for substorm morphology which employs individual modules which operate independently or couple together. This allows particular substorm events to be more accurately desc...
Data from the third rocket of the Substorm‐GEOS series have been studied. The rocket was launched from ESRANGE on January 27, 1979 at 21.52.20 UT into a pulsating aurora. Measurements were performed in the energy range 0‐33 keV with electrostatic analyzers and above 48 keV with solid state detectors. The pulsations are visible in the data above 3‐4 keV. In a pulsation maximum the bulk of the energy flux is carried by electrons of energies between 5 and 40 keV. In pulsation minima the bulk of the energy flux is carried by particles of lower energies. In the electron fluxes above 25 keV a modulation of about 3 Hz is seen in the loss cone. This modulation is seen only in pulsation maxima and the modulation depth increases with increasing energy.
During the later stages of the auroral substorm the luminosity distribution frequently resembles a double oval, one oval lying poleward of the normal or main UV auroral oval. We interpret the double oval morphology as being due to the plasma sheet boundary layer becoming active in the later stages of the substorm process. If the disturbance engulfs the nightside low‐latitude boundary layers, then the double oval configuration extends into the dayside ionospheric region. The main UV oval is associated with the inner portion of the central plasma sheet and can rapidly change its auroral character from being diffuse to discrete. This transition is associated with the substorm process and is fundamental to understanding the near‐Earth character of substorm onset. On the other hand, the poleward arc system in the nightside ionosphere occurs adjacent to or near the open‐closed field line boundary. This system activates at the end of the optical expansion phase and is a part of the recovery phase configuration in substorms where it occurs. These two source regions for nightside discrete auroral arcs are important in resolving the controversy concerning the mapping of arcs to the magnetosphere. The dayside extension of this double oval configuration is also investigated and shows particle signatures which differ considerably from those on the nightside giving clues to the magnetospheric source regions of the aurora in the two local time sectors. Near‐Earth substorm onsets are shown to be coupled to processes occurring much further tailward and indicate the importance of understanding the temporal development of features within the double oval. Using “variance images,” a new technique for the investigation of these dynamics is outlined.
[1] Equatorial proton energy densities in the ring current region have been statistically investigated by compiling data acquired with the POLAR/MICS instrument (1 -200 keV) in terms of the storm phases and Dst levels. The energy density is found to increase with decreasing Dst and to exhibit strong local time dependence during the storm main phase. In particular, the energy density at noon is interestingly shown to decrease during the main phase and increase during the recovery phase. A numerical simulation, which traces drift trajectories of the plasma sheet protons in the Volland-Stern type convection electric field, gives a reasonable result in comparison with the statistically obtained distribution. Those results support the scenario that the prime source of the higher energy density of the ring current protons is the plasma sheet protons whose drift motion is governed by the large-scale convection electric field most likely driven by the solar wind and IMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.