Context. The characterization of the internal structure of the superclusters of galaxies (walls, filaments and knots where the clusters are located) is paramount for understanding the formation of the Large Scale Structure and for outlining the environment where galaxies evolved in the last gigayears. Aims. (i) To detect the compact regions of high relative density (clusters and rich groups of galaxies); (ii) to map the elongated structures of low relative density (filaments, bridges and tendrils of galaxies); (iii) to characterize the galaxy populations on filaments and study the environmental effects they are subject to. Methods. We employed optical galaxies with spectroscopic redshifts from the SDSS-DR13 inside rectangular boxes encompassing the volumes of a sample of 46 superclusters of galaxies, up to z = 0.15. A virial approximation was applied to correct the positions of the galaxies in the redshift space for the "finger of God" projection effect. Our methodology implements different classical pattern recognition and machine learning techniques (Voronoi tessellation, hierarchical clustering, graph-network theory, minimum spanning trees, among others), pipelined in the Galaxy Systems-Finding algorithm and the Galaxy Filaments-Finding algorithm. Results. We detected in total 2 705 galaxy systems (clusters and groups, of which 159 are new) and 144 galaxy filaments in the 46 superclusters of galaxies. The filaments we detected have a density contrast above 3, with a mean value around 10, a radius of about 2.5 h −1 70 Mpc and lengths between 9 and 130 h −1 70 Mpc. Correlations between the galaxy properties (mass, morphology and activity) and the environment in which they reside (systems, filaments and the dispersed component) suggest that galaxies closer to the skeleton of the filaments are more massive by up to 25% compared to those in the dispersed component; 70% of the galaxies in the filament region present early type morphologies and the fractions of active galaxies (both AGN and SF) seem to decrease as galaxies approach the filament. Conclusions. Our results support the idea that galaxies in filaments are subject to environmental effects leading them to be more massive (probably due to larger rates of both merging and gas accretion), less active both in star formation and nuclear activity, and prone to the density-morphology relation. These results suggest that preprocessing in large scale filaments could have significant effects on galaxy evolution.
The pressure of hot gas in groups and clusters of galaxies is a key physical quantity, which is directly linked to the total mass of the halo and several other thermodynamical properties. In the wake of previous observational works on the hot gas pressure distribution in massive halos, we have investigated a sample of 31 clusters detected in both the Planck and Atacama Cosmology Telescope (ACT), MBAC surveys. We made use of an optimised Sunyaev-Zeldovich (SZ) map reconstructed from the two data sets and tailored for the detection of the SZ effect, taking advantage of both Planck coverage of large scales and the ACT higher spatial resolution. Our average pressure profile covers a radial range going from 0.04 × R500 in the central parts to 2.5 × R500 in the outskirts. In this way, it improves upon previous pressure-profile reconstruction based on SZ measurements. It is compatible, as well as competitive, with constraints derived from joint X-ray and SZ analysis. This work demonstrates the possibilities offered by large sky surveys of the SZ effect with multiple experiments with different spatial resolutions and spectral coverages, such as ACT and Planck.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.