According to Fitts' law, human movement can be modeled by analogy to the transmission of information. Fitts' popular model has been widely adopted in numerous research areas, including kinematics, human factors, and (recently) human-computer interaction (HCI). The present study provides a historical and theoretical context for the model, including an analysis of problems that have emerged through the systematic deviation of observations from predictions. Refinements to the model are described, including a formulation for the index of task difficulty that is claimed to be more theoretically sound than Fitts' original formulation. The model's utility in predicting the time to position a cursor and select a target is explored through a review of six Fitts' law studies employing devices such as the mouse, trackball, joystick, touchpad, helmet-mounted sight, and eye tracker. An analysis of the performance measures reveals tremendous inconsistencies, making across-study comparisons difficult. Sources of experimental variation are identified to reconcile these differences.
In view of the difficulties in evaluating computer pointing devices across different tasks within dynamic and complex systems, new performance measures are needed. This paper proposes seven new accuracy measures to elicit (sometimes subtle) differences among devices in precision pointing tasks. The measures are target re-entry, task axis crossing, movement direction change, orthogonal direction change, movement variability, movement error, and movement offset. Unlike movement time, error rate, and throughput, which are based on a single measurement per trial, the new measures capture aspects of movement behaviour during a trial. The theoretical basis and computational techniques for the measures are described, with examples given. An evaluation with four pointing devices was conducted to validate the measures. A causal relationship to pointing device efficiency (viz. throughput) was found, as was an ability to discriminate among devices in situations where differences did not otherwise appear. Implications for pointing device research are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.