Abstract. Firstly, the Markovian stochastic Schrödinger equations are presented, together with their connections with the theory of measurements in continuous time. Moreover, the stochastic evolution equations are translated into a simulation algorithm, which is illustrated by two concrete examples -the damped harmonic oscillator and a two-level atom with homodyne photodetection. Then, we consider how to introduce memory effects in the stochastic Schrödinger equation via coloured noise. Specifically, the approach by using the Ornstein-Uhlenbeck process is illustrated and a simulation for the non-Markovian process proposed. Finally, an analytical approximation technique is tested with the help of the stochastic simulation in a model of a dissipative qubit.
We investigate generalized non-Markovian stochastic Schrödinger equations (SSEs), driven by a multidimensional counting process and multidimensional Brownian motion introduced by A. Barchielli and C. Pellegrini [J. Math. Phys. 51, 112104 (2010)JMAPAQ0022-248810.1063/1.3514539]. We show that these SSEs can be translated in a nonlinear form, which can be efficiently simulated. The simulation is illustrated by the model of a two-level system in a structured bath, and the results of the simulations are compared with the exact solution of the generalized master equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.