The new emerged operating conditions in the power sector are forcing the power-market participants to develop new tools. Among them, load profiles are a key issue in retail power markets. For various types of small consumers without quarterhourly load measurements, determination of typical load profiles (TLPs) could serve as a tool for determining of their load diagrams. Their main function is in billing of consumers who have deviated from their contracted schedules. Moreover, a simple and straightforward method for assigning a TLP to a particular eligible consumer also needs to be established. In this paper, a methodology for allocating consumers' load profiles using probabilistic neural network (PNN) is presented. It is based on the preprocessed measured load profiles (MLPs), using wavelet multiresolution analysis, clustered with a FCM clustering algorithm with an appropriate cluster-validity measure. The results demonstrate the efficiency of the formation procedure for the proposed TLPs.Index Terms-Cluster analysis, fuzzy logic, load profiles, power distribution, probabilistic neural networks, wavelet analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.