Graphene is susceptible to morphological instabilities such as wrinkles and folds, which result from the imposition of thermo-mechanical stresses upon cooling from high temperatures and/ or under biaxial loading. A particular pattern encountered in CVD graphene is that of mosaic formation. Although it is understood that this pattern results from the severe biaxial compression upon cooling from high temperatures, it has not been possible to create such a complex pattern at room temperature by mechanical loading. Herein, we have managed by means of lateral wrinkling induced by tension and Euler buckling resulting from uniaxial compression upon unloading, to create such patterns in exfoliated graphene. We also show that these patterns can be used as channels for trapping or administering fluids at interstitial space between graphene and its support. This opens a whole dearth of new applications in the area of nano-fluidics but also in photo-electronics and sensor technologies.
Experimental and theoretical investigation of true axial stress transfer on regular-exfoliated-graphene micro-ribbons which are aligned to the loading direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.