Distinctive activities of various glycosidases were expressed in the cerebellum and cerebral cortex of mice during their development. In particular, N-acetyl-beta-D-hexosaminidase (EC 3.2.1.30) appeared to be developmentally regulated. A transient peak of enzyme activity at postnatal day 7 was characteristic for the cerebellum, whereas the activity in the cerebral cortex gradually increased through the 1st postnatal month and was maintained at a high level of activity throughout adulthood. The regulation of N-acetylhexosaminidase activity in the developing cerebellum of the staggerer mouse deviated clearly from enzyme activities in the wild-type, whereas the activity pattern in the staggerer cerebral cortex remained unaffected. In experiments mixing wild-type and staggerer cerebellum homogenates, the specific activity was additive. Thus, involvement of inhibitors or activating molecules can be excluded. This developmentally controlled regulation or disregulation in staggerer appears to be enzyme specific, sine beta-glucosidase, alpha-glucosidase, and beta-galactosidase did not exhibit such a pattern in either normal or staggerer mice. In the mutation weaver that, like staggerer, loses the majority of its cerebellar granule cells, N-acetyl-beta-hexosaminidase activity of the cerebellum was not elevated, indicating a specific defect in staggerer rather than a general effect on lysosomal enzymes due to cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.