A volume average model to study the transition of a semi-solid mushy zone to a planar solid/liquid interface in a static temperature gradient is presented. This model simulates the principal phenomena governing mushy zone dynamics including solute diffusion in the interdendritic and bulk liquids, migration of both the solid-liquid interface and the mushy-liquid boundary at the bottom and top of the mushy zone, and solidification. The motion of the solid-liquid interface is determined analytically by performing a microscopic solute balance between the solid and mushy zones. The motion of the mushy-liquid boundary is more complex as it consists of a transition between the mushy and bulk liquid zones with rapidly changing macroscopic properties. In order to simulate this motion, a control volume characterized by continuity in the solute concentration and a jump in both the liquid fraction and the solute concentration gradient was developed. The volume average model has been validated by comparison against prior in-situ X-ray radiography measurements [1], and phase-field simulations [2] of the mushy-to-planar transition in an Al-Cu alloy. A very good similarity was achieved between the observed experimental and phase-field dynamics with this new model even though the described system was only one-dimensional. However, an augmentation of the solute diffusion coefficient in the bulk liquid was required in order to mimic the convective solute transport occurring in the in situ X-ray study. This new model will be useful for simulating a wide range of natural and engineering processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.