Abstract-Low-power continuous wave "cooker" magnetrons driven from industrial-quality switch-mode power supplies have been frequency locked by driving them as current-controlled oscillators in a phase-lock loop (PLL). The noise performance of these frequency-locked oscillators is reported as a function of heater power.The injection of 30-to 40-dB signals derived from the reference oscillator of the PLL into the magnetron's output waveguide while the anode current is controlled by the PLL is shown to phase lock the magnetron's output. Results for locking performance are presented.
The applications of magnetrons to high power proton and cw electron linacs are discussed. An experiment is described where a 2.45 GHz magnetron has been used to drive a single cell superconducting cavity. With the magnetron injection locked, a modest phase control accuracy of 0.95 rms has been demonstrated. Factors limiting performance have been identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.