This study aimed to investigate the histopathological changes in the patellofemoral joint using a rat model of osteoarthritis that was induced using monosodium iodoacetate, and to establish a novel model of patellofemoral osteoarthritis in a rat model using histopathological analysis. Sixty male rats were used. Osteoarthritis was induced through a single intra-articular injection of monosodium iodoacetate in both knee joints. Animals were equally divided into two experimental groups based on the monosodium iodoacetate dose: 0.2 mg and 1.0 mg. Histopathological changes in the articular cartilage of the patellofemoral joint and the infrapatellar fat pad were examined at 3 days, 1 week, 2 weeks, 4 weeks, 8 weeks, and 12 weeks after the monosodium iodoacetate injection. In the 1.0-mg group, the representative histopathological findings of osteoarthritis were observed in the articular cartilage of the patellofemoral joint over time. Additionally, the Osteoarthritis Research Society International scores of the patellofemoral joint increased over time. The synovitis scores of the infrapatellar fat pad in both groups were highest at 3 days, and then the values decreased over time. The fibrosis score of the infrapatellar fat pad in the 1.0-mg group increased with time, whereas the fibrosis score in the 0.2-mg group remained low. Representative histopathological findings of osteoarthritis were observed in the articular cartilage of the patellofemoral joint in a rat model of osteoarthritis induced using monosodium iodoacetate. With appropriate selection, this model may be regarded as an ideal patellofemoral osteoarthritis model.
Age-related changes in the concentrations of constituent elements in the brains of rats and mice 1 wk to 24 mo old were determined with inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Seventeen elements could be determined with reasonable accuracy and reproducibility. They were P, K, Na, Mg, Ca, Fe, Zn, Cu, Rb, Al, Mn, Sr, Mo, Co, Pb, Cs, and Cd in order of concentrations in the adult rat brains. In these elements, six major elements (P, K, Na, Fe, Mg, Ca) were determined with ICP-AES and the others with ICP-MS. The concentrations of each element and the pattern of age-related changes were similar between the rat and mouse brains. The elements of which concentrations decreased with aging were K and Rb. On the other hand, the concentrations of some metal elements, including Fe, Cu, Sr, and Co, appeared to increase with growth and aging. The concentrations of other elements were relatively constant throughout the age examined.
s u m m a r yObjective: The aim of the study was to examine how mechanical unloading affects articular cartilage degeneration in the patellofemoral (PF) and tibiofemoral (TF) joints of a monosodium iodoacetate (MIA)induced rat model of osteoarthritis (OA). Design: The study involved 60 male rats. OA was induced by intra-articular injecting MIA into both knee joints. All animals were equally divided into two groups: sedentary (SE) and hindlimb unloading (HU) groups. Histopathological changes in the articular cartilage of the PF and TF joints were evaluated using the Osteoarthritis Research Society International (OARSI) score and modified Mankin score at 2 and 4 weeks after MIA injection. Results: In the SE and HU groups, representative histopathological changes in OA were detected in the PF and TF joints. The OARSI and modified Mankin scores for the PF and TF joints tended to increase over time after the injection of 0.2 mg or 1.0 mg of MIA in the SE and HU groups. Both the scores for the HU group were significantly lower than those for the SE group [OARSI score: P < 0.0001 (1.0-mg injection at 4 weeks); modified Mankin score: P ¼ 0.0116 (0.2-mg injection at 4 weeks); P ¼ 0.0004 and < 0.0001 (1.0-mg injection at 2 and 4 weeks, respectively)]. Conclusion: This study revealed new histological evidence that indicates that unloading condition suppresses articular cartilage degeneration and is beneficial in many areas of basal and clinical research involving OA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.