Zusammenfassung: In dieser Arbeit wird die räumliche Staupunktströmung für einRivlin-Ericksen-Fluid berechnet. Mit Hilfe einer Ähnlichkeitstransformation erhält man für die dimensionslose Stromfunktion eine Differentialgleichung vierter Ordnung. Es wird gezeigt, daß man dennoch mit den bekannten drei Randbedingungen auskommt. In Beispielen werden für bestimmte Parameterkombinationen Geschwindigkeitsprofile dargestellt und diskutiert. Ebenso werden Aussagen über die Wandschubspannung gemacht.
Abstract:In this paper the flow of a Rivlin-Ericksen fluid near an axisymmetric stagnation point is investigated. Using a similarity transformation one gets a fourth-order differential equation for the dimensionless stream function. It is shown that nevertheless the usual three boundary conditions are sufficient. Velocity profiles are calculated for various combinations of the interesting parameters. Finally the wall shear stress is calculated.
In this paper the flow near a two-dimensional stagnation point for a particular non-Newtonian fluid has been studied. For a second order fluid the equation of motion for the stream function has been solved by using a similarity approach. A new parameter which is a combination of the Weissenberg number and the Reynolds number characterizes the visco-elastic effects. A fourth order differential equation has to be solved numerically. Only three boundary conditions are necessary. Results for various cases will be shown. In addition an approxamation theory has been derived in order to recognize the influence of the new parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.