Cellulose isolated from Eichhornia crassipe (Water hyacinth) and Pennisetum purpureum (elephant grass) were evaluated using Fourier Transform Infra-Red spectroscopy and standard analytical methods for production of drilling mud. The physico-chemical analyses were carried out after chlorination and alkaline process using sodium chlorite and sodium hydroxide for the extraction of cellulose from the two biomass samples under same experimental conditions. Results of physico-chemical analysis of Eichhornia crassipes showed pH: 7.30; conductivity 0.028; bulk density 0.1097g/ml. Pennisetum purpureum showed pH: 7.50; conductivity 0.192; bulk density 0.1378g/ml. Pennisetum purpureum has a higher cellulose yield of 31.39% compared with Eichhornia crassipes with a percentage cellulose yield of 21.88%. Both biomass samples have Herzberg strain of Violet-blue. The results of the Fourier Transform Infra-Red spectroscopy showed prominent peaks at 3353-3164, 1655, 1629, 1320, 1033 and 1019 cm-1. The broad absorption bands around 3353-3164 cm-1 indicated stretching of –OH groups due to inter-molecular and intra-molecular hydrogen bonds of polymeric compounds. The sharp bands at 1655 cm-1 and 1629 cm-1 showed C=C stretch of aromatics. The sharp absorption bands observed at 1320, 1019 and 1033 cm-1 were characteristic of C—O stretch and C—O—C asymmetric stretch of cellulose. The FTIR results proved that the products extracted from the two samples were aromatic hydroxyl compounds. The results of the physicochemical analyses showed that cellulose isolated from the biomass samples which are persistent noxious weeds that invade the aquatic and terrestrial environment can be utilized in industrial applications for drilling fluid production.
Cellulose extracted from Eichhornia crassipe (Water hyacinth) and Pennisetum purpureum (elephant grass) yielded 21.88% and 31.39% respectively. Cellulose extracted was used to synthesize carboxymethyl cellulose (CMC) under heterogeneous condition with ethanol as the supporting medium. Effect of concentration of sodium hydroxide (NaOH) on the modification of cellulose to yield CMC was investigated. It was observed that percentage CMC yield increased with increase in NaOH concentration. Comparative studies of the two biomass samples through physico-chemical analyses in terms of degree of substitution (DS), water absorption capacity, water loss, pH, conductivity and analytical characterization using SEM-EDX, FT-IR and EDXRF spectroscopy of the extracted cellulose and synthesized CMC were done. The DS of CMC obtained by alkalization reaction of cellulose from E. crassipe and P. purpureum with monochloroacetic acid was in the range of 0.54-0.75 which showed that it is highly soluble. Fourier Transform-Infrared (FT-IR) spectrophotometer showed changes of functional group from cellulose to CMC. The absorption at 3283 cm-1 and 3320 cm-1 as observed in E. crassipe and P. purpureum spectra showed OH vibration of polymeric compounds. The presence of bands at 1592 cm-1 and 1417 cm-1 in E. crassipe spectrum and bands at 1566 cm-1 and 1410 cm-1 observed in P. purpureum spectrum showed the presence of –COO group as a result of carboxymethylation reaction on cellulose during modification process. EDXRF was applied for quality control and product development due to the unavailability of the elemental composition of elephant grass and water hyacinth in the literature. The morphology and elemental compositions on the surface of the biomass were analyzed by SEM-EDX and among the chemical elements detected were C, O, Na, Mg, Al, S, Cl, K, Ca, Fe Si and Zr which confirms the elements identified with EDXRF spectroscopy. XRF spectra show high peaks at Fe, K and Sn for untreated P. purpureum samples and high peaks at Ca, Fe and Sr for untreated E. crassipe fiber. Both samples are rich in Iron (Fe). Samples were free from some toxic elements such as Pb, As, Hg, V and Ni which makes them safe for use as novel raw materials for industrial applications. Also very low concentration of Sulphur in the samples, make them safe to be considered as additives in drilling mud formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.