Defect structure of nominally pure lithium niobate crystals grown from a boron doped charge have been studied by Raman and optical spectroscopy, laser conoscopy, and photoinduced light scattering. An influence of boron dopant on optical uniformity, photoelectrical fields values, and band gap have been also studied by these methods in LiNbO3 crystals. Despite a high concentration of boron in the charge (up to 2 mol%), content in the crystal does not exceed 10−4 wt%. We have calculated that boron incorporates only into tetrahedral voids of crystal structure as a part of groups [BO3]3−, which changes O–O bonds lengths in O6 octahedra. At this oxygen–metal clusters MeO6 (Me: Li, Nb) change their polarizability. The clusters determine optically nonlinear and ferroelectric properties of a crystal. Chemical interactions in the system Li2O–Nb2O5–B2O3 have been considered. Boron, being an active element, structures lithium niobate melt, which significantly influences defect structure and physical properties of a crystal grown from such a melt. At the same time, amount of defects NbLi and concentration of OH groups in LiNbO3:B is close to that in stoichiometric crystals; photorefractive effect, optical, and compositional uniformity on the contrary is higher.
Experimental and theoretical data on the influence of В2О3 flux on the crystal-melt system, the structural features, and the optical properties of a crystal of lithium niobate are summarized. The Gibbs energies of the borate impurities formation (Al4B2O9, CaB2O4, CaB4O7, Ca2B2O5, Ca3B2O6, PbB2O4) in a congruent composition charge of lithium niobate are calculated. It was found that the element boron, as an active complexing agent, in the composition of the В2О3 flux aligns the distribution coefficients of lithium (KLi) and niobium (KNb). Also, the element boron is able to prevent the transition of trace amounts of impurity metals into the structure of a lithium niobate crystal. Boron increases the ordering of structural units of the cation sublattice and distorts the anionic framework of the crystal. This is due to the fact that boron is embedded in the tetrahedral voids faces of the crystal structure in trace amounts (4∙10-4 mol.%). This leads to changes in bond lengths O-O of the oxygen octahedra O6, thereby changing polarizability oxygen-octahedral cluster NbO6, determining nonlinear optical and ferroelectric properties of the crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.