The use of sound waves to study the integrity of various metal structures is the most relevant method. The relevance is traced, in particular, in the ease of conducting such experiments, as well as its cheapness. The design of various parts requires the use of modern computer technology, which, using a mathematical apparatus that describes the process, allows you to determine the actual characteristics of the material to determine durability. This approach makes it possible to effectively create design solutions in order to create new parts and upgrade existing materials to extend their service life.
The purpose of this work is to build mathematical models of homogeneous wave processes and their analysis in the form of computational experiments to control the passage of sound signals through the surface of the studied materials of objects. This approach is used to determine the influence of geometric parameters of defects in the form of cracks through which the signal passes, on its characteristics, which it describes after passing through these defects to the signal receiver, in particular, is the amplitude and frequency.
For computational experiments, a point exciter of harmonic oscillations and a point receiver were chosen, which are located on different sides relative to the defect of a simple geometric shape. It should be noted that even minor defects affect the amplitude of the received signal, which passed through such defects. When a signal passes through defects of a simple geometric shape, the amplitude of such a signal decreases by 5–8 times and the average frequency decreases by 2–3 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.