New types of beam-plasma devices generating intense stochastic microwave radiation in the interaction of electron beams with hybrid plasma waveguides were developed and put into operation at the National Science Center Kharkov Institute of Physics and Technology (Ukraine). The objective of the paper is to discuss the results of theoretical and experimental studies and numerical simulations of the normal and oblique incidence of linearly polarized electromagnetic waves on an interface between a vacuum and an overcritical plasma. The main results of the reported investigations are as follows: (i) for the parameter values under analysis, the transmission coefficient for microwaves with a stochastically jumping phase is one order of magnitude greater than that for a broadband regular electromagnetic wave with the same spectral density; (ii) the electrons are heated most efficiently by obliquely incident waves with a stochastically jumping phase and, in addition, the electron distribution function has a high-energy tail; and (iii) necessary conditions for gas breakdown and for the initiation of a microwave discharge in stochastic fields in a light source are determined. The anomalously large transmission coefficient for microwaves, the anomalous character of the breakdown conditions, the anomalous behavior of microwave gas discharges, and the anomalous nature of collisionless electron heating, are attributed to stochastic jumps in the phase of microwave radiation
Equilibrium geometries and cohesion energies of Ag0.94Cd0.06, Ag0.94In0.06, Au0.94Cd0.06, and Au0.94In0.06 solid alloys have been studied from the first principles within the Density Functional Theory using ab initio pseudopotentials. Equilibrium geometries are obtained by total energy minimization method using the Local Density Approximation and Generalized Gradient Approximation methods. Optical functions are calculated within the independent particles picture. We report essentially different behavior of Cd and In impurity atoms in Au- and Ag-based alloys: the aggregated (or quasi aggregated) phases in In-containing alloys are expected in contrast to the alloys with Cd atom where homogeneous impurity distribution over the bulk should dominate. Study of optical spectra in Ag0.94Cd0.06 and Au0.94Cd0.06 alloys indicate that optical losses in visible and near ultraviolet spectral range remarkably increase at bigger Cd concentrations. In ultraviolet spectral region redistribution of optical oscillator strengths results in both increase and decrease of optical losses in selected spectral regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.