A systematic structural study of complexes formed by aluminium and gallium trihalides with 4,4'-bipyridine (bipy) in 2 : 1, 1 : 1, and 1 : 2 stoichiometric ratios has been performed. Molecular structures of 11 complexes in the solid state have been determined for the first time. Complexes of 2 : 1 composition are molecular, while complexes of 1 : 1 composition form metal-organic frameworks of different kinds: an ionic 3D network (three interpenetrated lvt nets for AlCl3bipy), an ionic 2D network for AlBr3bipy and GaBr3bipy and a 1D coordination polymer in the case of GaCl3bipy. Thus, the nature of the Lewis acid plays a critical role in the structural type of the complex in the solid state. Incorporation of excess bipy molecules into (GaCl3bipy)∞ (formation of crystallosolvate) leads to an unprecedented change of the molecular structure from a non-ionic 1D coordination polymer to an ionic 2D metal organic framework [GaCl2bipy2](+)[GaCl4](-)·2bipy. As indicated by the temperature-dependent XRD study, removal of bipy by heating in a vacuum restores the non-ionic 1D structure. Quantum chemical computations for simple cluster model systems (up to eight Al and Ga atoms) reveal that ionic forms are slightly favourable, although the energy differences between the ionic and non-ionic structures are not large. These theoretical predictions are in good agreement with experimental findings. Thus, even relatively simple cluster models may be used to indicate the structural preferences in the solid state. Both experimental and computational IR frequency shifts of the in-plane ring bending mode of bipy upon complexation correlate well with the M-N bond distances in the complexes.
The complexes of group 13 element trispentafluorophenyl derivatives E(C6F5)3 (E = B, Al, Ga, In) with diethyl ether of 1:1 composition have been synthesized and structurally characterized. All compounds are isostructural. Thermal stability studies reveal that at elevated temperatures all complexes decompose with pentafluorobenzene evolution. The geometries and thermodynamic characteristics for the dissociation reactions of the compounds have been computed using three DFT methods. The 1H NMR α‐proton chemical shifts for the coordinated ether in deuteriobenzene and in CD2Cl2 solutions correlate with gas phase dissociation enthalpies of the complexes. Potentially high Lewis acidity of B(C6F5)3 is hindered by the large pyramidalization energy of the acceptor moiety.
The molecular structures of trichlorido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III), [GaBr3(C15H11N3)], are isostructural, with the Ga(III) atom displaying an octahedral geometry. It is shown that the Ga-N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2':6',2''-terpyridine donor as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.