The cell type specific sequences of transcriptional programs during lung regeneration have remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model, we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8 + transitional stem cell state during alveolar regeneration. These cells have squamous morphology, feature p53 and NFkB activation and display transcriptional features of cellular senescence. The Krt8+ state appears in several independent models of lung injury and persists in human lung fibrosis, creating a distinct cell-cell communication network with mesenchyme and macrophages during repair. We generated a model of gene regulatory programs leading to Krt8+ transitional cells and their terminal differentiation to alveolar type-1 cells. We propose that in lung fibrosis, perturbed molecular checkpoints on the way to terminal differentiation can cause aberrant persistence of regenerative intermediate stem cell states.
Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream swimming of mammalian sperm cells along solid surfaces, suggesting a robust physical mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself relative to an ambient flow is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments at different shear rates and viscosities. Using a 3D reconstruction algorithm to identify the flagellar beat patterns causing left or right turning, we present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this 3D analysis uncovers ambidextrous flagellar waveforms and shows that the cell's turning direction is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror symmetry in the midpiece section, likely arising from a buckling instability. These results challenge current theoretical models of sperm locomotion.sperm swimming | rheotaxis | fluid dynamics | microfluidics | simulations T axis, the directed kinematic response to external signals, is a defining feature of living things that affects their reproduction, foraging, migration, and survival strategies (1-4). Higher organisms rely on sophisticated networks of finely tuned sensory mechanisms to move efficiently in the presence of chemical or physical stimuli. However, various fundamental forms of taxis are already manifest at the unicellular level, ranging from chemotaxis in bacteria (5) and phototaxis in unicellular green algae (2) to the mechanical response (durotaxis) of fibroblasts (6) and rheotaxis (7, 8) in spermatozoa (3, 9-12). Over the last few decades, much progress has been made in deciphering chemotactic, phototactic, and durotactic pathways in prokaryotic and eukaryotic model systems. In contrast, comparatively little is known about the physical mechanisms that enable flow gradient sensing in sperm cells (3, 9-13). Recent studies (3, 12) suggest that mammalian sperm use rheotaxis for long-distance navigation, but it remains unclear how shear flows alter flagellar beat patterns in the vicinity of surfaces and, in particular, how such changes in the beat dynamics affect the steering process. Answering these questions will be essential for evaluating the importance of chemical (14) and physical (4) signals during mammalian fertilization (15-17).A necessary requirement for any form of directed kinematic response is the ability to change the direction of loco...
Lung disease is a major health burden accounting for one in six deaths globally 1 . The lung's large surface area is exposed to a great variety of environmental and microbial insults causing injuries to its epithelium that require a regenerative response mediated by tissue-resident stem and progenitor Lung injury activates quiescent stem and progenitor cells to regenerate alveolar structures. The sequence and coordination of transcriptional programs during this process has largely remained elusive. Using single cell RNA-seq, we first generated a whole-organ bird's-eye view on cellular dynamics and cell-cell communication networks during mouse lung regeneration from ~30,000 cells at six timepoints. We discovered an injury-specific progenitor cell state characterized by Krt8 in flat epithelial cells covering alveolar surfaces. The number of these cells peaked during fibrogenesis in independent mouse models, as well as in human acute lung injury and fibrosis. Krt8+ progenitors featured a highly distinct connectome of receptor-ligand pairs with endothelial cells, fibroblasts, and macrophages. To 'sky dive' into epithelial differentiation dynamics, we sequenced >30,000 sorted epithelial cells at 18 timepoints and computationally derived cell state trajectories that were validated by lineage tracing genetic reporter mice. Airway stem cells within the club cell lineage and alveolar type-2 cells underwent transcriptional convergence onto the same Krt8+ progenitor cell state, which later resolved by terminal differentiation into alveolar type-1 cells. We derived distinct transcriptional regulators as key switch points in this process and show that induction of TNF-alpha/NFkappaB, p53, and hypoxia driven gene expression programs precede a Sox4, Ctnnb1, and Wwtr1 driven switch towards alveolar type-1 cell fate. We show that epithelial cell plasticity can induce non-gradual transdifferentiation, involving intermediate progenitor cell states that may persist and promote disease if checkpoint signals for terminal differentiation are perturbed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.