Предложен способ модификации мишени для МАLDI-МS-анализа, позволяющий селективно выделять аналиты из биологических образцов непосредственно на поверхности мишени, как альтернатива классическим методам. Для модификации мишени суспензию металл-аффинного сорбента на основе оксида железа(III) в 50% водно-метанольном растворе электрораспыляли в бескапельном режиме c динамическим делением потока жидкости при атмосферном давлении в нормальных условиях. МАLDI-мишень выступала в качестве противоэлектрода. На МАLDI-мишень наносился слой сорбента в виде пятна, частицы которого в дальнейшем устойчивы к воздействию растворителей. На модифицированной МАLDI-мишени проводилось металл-аффинное обогащение фосфорилированного пептида с аминокислотной последовательностью SSNGHV(pY)EKLSSI из образца триптического гидролизата глобина человека. МАLDI-масс-спектр записывали с пятна сорбента. Такая методика создана в качестве альтернативы трудоемкой пробоподготовке биопроб и позволяет ограничиться минимальными объемами образца и растворителей.
Prior to the commissioning of the IVG.1M reactor with low-enriched uranium fuel, experimental studies of reactor characteristics were carried out on physical and energy start-ups, which should confirm the results of preliminary computational studies and the operability of the reactor. This article is devoted to the study of the axial and radial energy release profile in the IVG.M reactor fuel assemblies using in-reactor dosimetry techniques. The experimental results are compared with the results of neutron-physical simulations. The obtained energy release irregularity coefficients can be used in further thermo-technical calculations.
The response function is the important information for the precise interpretation of experimental data and also for characterizing the developing nuclear instruments. Measurement of the response function normally requires a number of mono-energetic gamma-ray sources, a long acquisition time and an appropriate experimental setup. The Monte Carlo method, as an alternative to response function measurement, has widely been used and recommended. In this study, a computational model of an HPGe detector has been developed by using the MCNP5 code. To validate the simulated model, the simulations from mono-energetic sources have been compared to the corresponding measured data. Any deviation from the measurement could be attributed to the unmodeled details of the detector crystal, so they needed adjustment. Moreover, an analysis has been undertaken on the dependency of detection efficiency on the dead layer thickness of the germanium crystal. Having developed a computational model of the crystal, a set of correction factors was extracted to take into account the gamma-ray self-absorption within the source volume. The simulated model of the HPGe detector in this study can be used to calculate the detection efficiency when the samples are not of the standard geometry which require self-absorption considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.