Single fractional monolayer (FM) CdSe/ZnSe structures have been grown by molecular beam epitaxy (MBE), employing both conventional MBE and migration-enhanced epitaxy (MEE). A precise calibration of the FM mean thickness in the range of 0.15–3.0 ML has been performed for both techniques, revealing more than a 3.5 times lower Cd incorporation ability for the MEE mode at the same Cd and Se incident fluxes. Steady-state and time-resolved photoluminescence spectroscopy is used to characterize the intrinsic morphology of the CdSe FMs, with a special emphasis on the submonolayer thickness range. Both MBE and MEE grown samples exhibit inhomogeneity of the excitonic system, which can be explained by coexistence of a homogeneous alloylike layer and relatively large CdSe 2D clusters. The MEE samples display smaller fluctuations of the layer thickness and island sizes.
This letter reports on the self-organized growth of nanoscale dot-like CdSe-based islands during molecular beam epitaxy of CdSe/ZnSe nanostructures with a CdSe thickness between 0.75 and 3.0 monolayers. An increase in the nominal CdSe thickness results in a higher density of islands (up to 2×1010 cm−2) and is accompanied by dramatic enhancement of the photoluminescence efficiency. The density of large relaxed islands appears to saturate at a value of (3–4)×109 cm−2. Room temperature (Zn, Mg)(S, Se)-based optically pumped lasers with an extremely low threshold (less than 4 kW/cm2), as well as (Be, Mg, Zn)Se-based injection laser diodes using a single (2.5–2.8) monolayer thick CdSe active region, both demonstrating significantly enhanced degradation stability, have been fabricated and studied.
Development of molecular beam epitaxy (MBE) of two-dimensional (2D) layered materials is an inevitable step in realizing novel devices based on 2D materials and heterostructures. However, due to existence of numerous polytypes and occurrence of additional phases, the synthesis of 2D films remains a difficult task. This paper reports on MBE growth of GaSe, InSe, and GaTe layers and related heterostructures on GaAs(001) substrates by using a Se valve cracking cell and group III metal effusion cells. The sophisticated self-consistent analysis of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy data was used to establish the correlation between growth conditions, formed polytypes and additional phases, surface morphology and crystalline structure of the III–VI 2D layers. The photoluminescence and Raman spectra of the grown films are discussed in detail to confirm or correct the structural findings. The requirement of a high growth temperature for the fabrication of optically active 2D layers was confirmed for all materials. However, this also facilitated the strong diffusion of group III metals in III–VI and III–VI/II–VI heterostructures. In particular, the strong In diffusion into the underlying ZnSe layers was observed in ZnSe/InSe/ZnSe quantum well structures, and the Ga diffusion into the top InSe layer grown at ~450 °C was confirmed by the Raman data in the InSe/GaSe heterostructures. The results on fabrication of the GaSe/GaTe quantum well structures are presented as well, although the choice of optimum growth temperatures to make them optically active is still a challenge.
The electron spin coherence in n-doped and undoped, self-assembled CdSe/Zn(S,Se) quantum dots has been studied by time-resolved pump-probe Kerr rotation. Long-lived spin coherence persisting up to 13 ns after spin orientation has been found in the n-doped quantum dots, outlasting significantly the lifetimes of charge neutral and negatively charged excitons of 350 − 530 ps. The electron spin dephasing time as long as 5.6 ns has been measured in a magnetic field of 0.25 T. Hyperfine interaction of resident electrons with a nuclear spin fluctuations is suggested as the main limiting factor for the dephasing time. The efficiency of this mechanism in II-VI and III-V quantum dots is analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.