We investigated the effects of a chemically‐vapor‐deposited mullite coating (∼100 nm) on the oxidation resistance of sintered Si3N4 in air and steam environments. The coating was sacrificially incorporated into the thermally grown oxide (TGO) on Si3N4 during isothermal oxidation in air at 1400°C, leading to significantly reduced TGO growth as well as markedly improved TGO morphology. This improvement can be attributed to the refractory and viscous nature of the SiO2‐Al2O3 system, compared with SiO2, when under the influence of alkali and/or alkaline‐earth fluxing elements. However, the mullite coating had little effect on the stability of the ceramic in the steam environment at 1200°C, due likely to high activity of SiO2 in mullite.
Si3N4 sintered with Lu2O3 was exposed to 1 atm of oxygen and steam environments at 1200–1400 °C. The effects of additive and impurity species on the morphological development of the oxide layer were examined. Oxide layers grown on as-received samples in oxygen generally contained bubbles and cracks and underwent spallation due to the presence of an initial impurity-laden oxide layer. Oxide layers grown on as-received samples in steam exhibited layered morphology: a glassy outer layer and a cristobalite inner layer with a high population density of Lu2Si2O7 particles between. The Lu2Si2O7 particles accumulated at the interface led to extensive spallation of the upper oxide layer. Removal of the initial oxide by polishing resulted in improved oxidation resistance and oxide morphology in oxygen and in steam.
A 25 nm thick α‐alumina layer was deposited on a turbine‐grade silicon nitride by sol‐gel dip coating and subsequent heat treatment in air at 1200°C. This layer had a nanometer grain structure. Silicon nitride protected by this thin layer showed a significant improvement in oxidation resistance over its uncoated counterpart after 200 cyclic exposures in air at 1250°C. The oxide layer grown on the coated silicon nitride also exhibited superior surface morphology, compared with the uncoated silicon nitride.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.