A high-gain harmonic-generation free-electron laser is demonstrated. Our approach uses a laser-seeded free-electron laser to produce amplified, longitudinally coherent, Fourier transform-limited output at a harmonic of the seed laser. A seed carbon dioxide laser at a wavelength of 10.6 micrometers produced saturated, amplified free-electron laser output at the second-harmonic wavelength, 5.3 micrometers. The experiment verifies the theoretical foundation for the technique and prepares the way for the application of this technique in the vacuum ultraviolet region of the spectrum, with the ultimate goal of extending the approach to provide an intense, highly coherent source of hard x-rays.
A decade-long effort at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) on development of superconducting undulators culminated in December 2012 with the installation of the first superconducting undulator "SCU0" into Sector 6 of the APS storage ring. The device was commissioned in January 2013 and has been in user operation since. This paper presents the magnetic and cryogenic design of the SCU0 together with the results of stand-alone cold tests. The initial commissioning and characterization of SCU0 as well as its operating experience in the APS storage ring are described.
A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~ 0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.
Recently there has been some concern about possible radiation damage due to ionizing particles present in high energy storage rings such as multi-GeV electrons, fast neutrons, or hard photons. Partial demagnetization has been observed on undulators after mis-steering of the injected electron beam. Our interest was focused to possible radiation damage of a permanent magnet insertion device during routine operation of a storage ring. Therefore, we repeated the magnetic measurements on one of the three 4.0 m long x-ray wigglers used at place #2 in DORIS III. This device is in operation since 1991. The results were compared to the data taken before installation. The total dose was determined from measurements with thermoluminescence dosimeters and the known number of stored ampere hours. The results which show no significant degradation of the magnetic performance are presented and discussed.
The first undulator radiation has been extracted from the Advanced Photon Source ( A P S ) .The results from the characterization of this radiation are very satisfactory. With the undulator set at a gap of 15.8 mm (K=1.61), harmonics as high as the 17th were observed using a crystal spectrometer. The angular distribution of the third-harmonic radiation was measured, and the source was imaged using a zone plate to determine the particle beam emittance. The horizontal beam emittance was found to be 6.9k1.0 nm-rad, and the vertical emittance coupling was found to be less than 3%. The absolute spectral flux was measured over a wide range of photon energies, and it agrees remarkably well with the theoretical calculations based on the measured undulator magnetic field profile and the measured beam emittance. These results indicate that both the emittance of the electron beam and the undulator magnetic field quality exceed the original specifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.