Single-spin asymmetries for pions and charged kaons are measured in semi-inclusive deep-inelastic scattering of positrons and electrons off a transversely nuclear-polarized hydrogen target. The dependence of the cross section on the azimuthal angles of the target polarization ([phi]S) and the produced hadron ([phi]) is found to have a substantial sin([phi]+[phi]S) modulation for the production of [pi]+, [pi]- and K+. This Fourier component can be interpreted in terms of non-zero transversity distribution functions and non-zero favored and disfavored Collins fragmentation functions with opposite sign. For [pi]0 and K- production the amplitude of this Fourier component is consistent with zero
The momentum and helicity density distributions of the strange quark sea in the nucleon are obtained in leading order from charged-kaon production in deep-inelastic scattering on the deuteron. The distributions are extracted from spin-averaged K� multiplicities, and from K� and inclusive double-spin asymmetries for scattering of polarized positrons by a polarized deuterium target. The shape of the momentum distribution is softer than that of the average of the and quarks. In the region of measurement 0.021.0�GeV2, the helicity distribution is zero within experimental uncertainties
Multiplicities in semi-inclusive deep-inelastic scattering are presented for each charge state of pi(+/-) and K-+/- mesons. The data were collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams incident on a hydrogen or deuterium gas target. The results are presented as a function of the kinematic quantities x(B), Q(2), z, and P-h perpendicular to. They represent a unique data set for identified hadrons that will significantly enhance our understanding of the fragmentation of quarks into final-state hadrons in deep-inelastic scattering. DOI: 10.1103/PhysRevD.87.07402
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.