Petroleum crudes of different geographical origin exhibit differences in chemical composition that arise from formation and ripening processes in the crude. Such differences are transmitted to the fractions obtained in the processing of petroleum. The use of unsupervised classification/sorting methods such as principal component analysis (PCA) or cluster analysis to near-infrared (NIR) spectra for bitumens obtained from petroleum crudes of diverse origin has revealed that composition differences among bitumens are clearly reflected in the spectra, which allows them to be distinguished in terms of origin. Accordingly, in this work we developed classification methods based on soft independent modeling of class analogy (SIMCA) and artificial neural networks (ANNs). While the latter were found to accurately predict the origin of the crudes, SIMCA methodology failed in this respect.
The fact that bitumens behave as non-Newtonian fluids results in non-linear relationships between their near-infrared (NIR) spectra and the physico-chemical properties that define their consistency (viz. penetration and viscosity). Determining such properties using linear calibration techniques [e.g. partial least-squares regression (PLSR)] entails the previous transformation of the original variables by use of non-linear functions and employing the transformed variables to construct the models. Other properties of bitumens such as density and composition exhibit linear relationships with their NIR spectra. Artificial neural networks (ANNs) enable modelling of systems with a non-linear property-spectrum relationship; also, they allow one to determine several properties of a sample with a single model, so they are effective alternatives to linear calibration methods. In this work, the ability of ANNs simultaneously to determine both linear and non-linear parameters for bitumens without the need previously to transform the original variables was assessed. Based on the results, ANNs allow the simultaneous determination of several linear and non-linear physical properties typical of bitumens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.