Aims. We investigate the properties of the host galaxy of the blazar J0324+3410 (B2 0321+33) by the analysis of B and R images obtained with the NOT under good photometric conditions. Methods. The galaxy was studied using different methods: Sersic model fitting, unsharp-masked images, B−R image and B−R profile analysis.Results. The images show that the host galaxy has a ring-like morphology. The B − R colour image reveals two bluish zones: one that coincides with the nuclear region, interpreted as the signature of emission related to the active nucleus, the other zone is extended and is located in the host ring-structure. We discuss the hypothesis that the later is thermal emission from a burst of star formation triggered by an interacting/merging process.
Context. This is the second in a series of papers presenting VLBI observations of the 293 Caltech-Jodrell Bank Flat-spectrum (hereafter CJF) sources and their analysis. Aims. We obtain a consistent motion dataset large enough to allow the systematic properties of the population to be studied. Methods. We present detailed kinematic analysis of the complete flux-density limited CJF survey. We computed 2D kinematic models based on the optimal model-fitting parameters of multi-epoch VLBA observations. This allows us to calculate not only radial, but also orthogonal motions, and thus to study curvature and acceleration. Statistical tests of the motions measured and their reliability were performed. A correlation analysis between the derived apparent motions, luminosities, spectral indices, and core dominance and the resulting consequences is described. Results. With at least one velocity in each of the 237 sources, this sample is much larger than any available before, so it allows a meaningful statistical investigation of apparent motions and any possible correlations with other parameters in AGN jets. The main results to emerge are as follows: -In general motions are not consistent with a single uniform velocity applicable to all components along a jet. -We find a slight trend towards a positive outward acceleration and also adduce some evidence for greater acceleration in the innermost regions.-We find a lack of fast components at physical distances less than a few pc from the reference feature. -Only ∼4% of the components from galaxies and <2% of those from quasars undergo large bends i.e. within 15• of ±90• . -The distribution of radial velocities shows a broad distribution of velocities (apparent velocities up to 30 c). Fifteen percent of the best-sampled jet components exhibit low velocities that may need to be explained in a different manner to the fast motions. -Some negative superluminal motions are seen, and in 15 cases (6%) these are definitely significant. -We find a strong correlation between the 5 GHz luminosity and the apparent velocity.-The CJF galaxies, on average, show slower apparent jet-component velocities than the quasars. -The mean velocity in the VLBA 2 cm survey (Kellermann et al. 2004, ApJ, 609, 539) is substantially higher than in the CJF survey, the ratio could be roughly a factor of 1.5−2. This supports the observed trend toward increasing apparent velocity with increasing observing frequency. Conclusions. This AGN survey provides the basis for any statistical analysis of jet and jet-component properties.
We present new observations of the gravitational lens system CLASS B0128+437. HST observations detect a very faint, extended object in I-band with no emission from the lensed images visible; no detection at all is made in V-band. The lens system is detected with much higher signal to noise with UKIRT in K-band, but the resolution is not sufficient to allow the lensed images and the lens galaxy to be separated. A careful astrometric calibration, however, suggests that the peak of the infrared emission corresponds to the two merging images A and B and therefore that the lensed images dominate at infrared wavelengths. The new radio data consist of VLBI radio images at three frequencies, 2.3, 5 and 8.4GHz, made with the VLBA and the 100-m Effelsberg telescope. The lensed source consists of three well-defined sub-components embedded in a more extended jet. Due to the fact that the sub-components have different spectral indices it is possible to determine which part of each image corresponds to the same source sub-component. Our main finding is that one of the images, B, looks very different to the others, there being no obvious division into separate sub-components and the image being apparently both broader and smoother. This is a consequence we believe of scatter-broadening in the ISM of the lensing galaxy. The large number of multiply-imaged source sub-components also provide an abundance of modelling constraints and we have attempted to fit an SIE+external shear model to the data, as well as utilising the novel method of Evans & Witt. It proves difficult in both cases, however, to obtain a satisfactory fit which strongly suggests the presence of sub-structure in the mass distribution of the lensing galaxy, perhaps of the kind that is predicted by CDM theories of structure formation.Comment: Accepted for publication in MNRAS. 13 pages, 8 figures. Full resolution versions of Figures 1, 2, 3, 4 and 5 are obtainable from ftp://ftp.jive.nl/pub/biggs/0128_highres.tar.g
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.