The current study investigated the effects of temperature manipulation (TM) during late embryogenesis on temperature preference, response to high environmental temperature, behavior, and performance in young layer chicks. Control (CC) embryos (n = 96) were incubated at 37.8 degrees C eggshell temperature throughout incubation. Thermally manipulated embryos (n = 96) were incubated at 37.8 degrees C eggshell temperature throughout incubation and were exposed to 40 degrees C for 4 h/d from embryonic d 14 to 18 (TM chicks). After hatch, chicks from each treatment were divided into 3 subgroups (n = 32 per group) and were subjected to a temperature preference test at d 1, 7, or 33. One day after the temperature preference test, each subgroup was exposed to 1 thermal challenge for 4 h (d 2, 40 degrees C; d 8, 40 degrees C; or d 34, 35 degrees C). Effects of TM on (fearfulness) behavior of chicks were investigated in a tonic immobility test and during home pen observations. Temperature manipulation decreased incubation time with 7 h (P < 0.0001) and body temperature at hatch with 0.2 degrees C (P = 0.002). The TM chicks preferred a lower ambient temperature in the temperature preference test (P < 0.05) and showed a higher body temperature response than CC chicks to the thermal challenge at d 2 and 8 (P < 0.05). No effects of TM on behavior and performance were observed. Because most TM studies are conducted in broilers, this study is the first attempt to unravel the effects of TM during late embryogenesis on posthatch environmental adaptation in layer chicks. The results demonstrated that effects of our TM on postnatal temperature preference and response to high environmental temperatures are only found until d 8 of age. This may suggest 1 of 3 options: a) the timing or the level, or both, of TM and duration were not at the sensitive period of embryogenesis or not sufficient, or both, respectively; b) the level of the postnatal thermal challenge was not strong enough to induce a hyperthermic response; and c) the postnatal effects of TM in layers are limited in time.
This study aimed to investigate whether pre-and early postnatal experiences of rearing hens contribute to the ability to cope with infectious challenges at an older age. In a 2 3 2 factorial arrangement, 352 Lohmann Brown chicks were exposed to either suboptimal or optimized incubation plus hatch conditions, and to cage or enriched rearing from week 0 to 7 of age. After week 7 all rearing conditions were similar until the end of the experiment. The development of adaptive capacity to infectious challenges was investigated by introducing an Eimeria and Infectious Bronchitis (IB) infection on day 53 and day 92, respectively. BW gain and feed intake during the infections, duodenal lesions and amount of positive stained CD41 T cells, CD8 1 T cells and macrophages at day 4 and day 7 after Eimeria infection, as well as the IB antibody titer throughout the experimental period were determined. The results showed a significant interaction between incubation plus hatch and rearing environment. Optimized incubation plus hatch conditions followed by an enriched rearing environment resulted in the least weight loss (P , 0.05) and the highest feed intake (P , 0.01) from day 3 to day 7 after the Eimeria infection (day 56 to 60 of age), compared with all other treatments. In addition, the optimized 3 enriched chicks had the highest BW gain from day 7 to day 14 after IB infection (day 99 to 106 of age), compared with chicks housed in a cage environment (P , 0.01). Besides the interaction, optimized incubation plus hatch alone resulted in reduced macrophage numbers in the duodenal tissue at day 4 after Eimeria infection, compared with suboptimal incubation plus hatch, whereas the enriched rearing environment stimulated the recovery of intestinal damage caused by Eimeria (P , 0.05) and reduced the production of specific antibodies after IB infection (P , 0.05), compared with the cage environment. In conclusion, this study shows that early life experiences can indeed affect the capacity of rearing hens to cope with an Eimeria and IB infection at an older age, in which performance of chicks is best maintained after optimized incubation plus hatch followed by enriched rearing. This suggests that the development of adaptive capacity to infectious challenges can be influenced with management during a short period in pre-or early postnatal life, but that effects last for a considerable time after cessation of the specific management.
This study aimed to investigate whether suboptimal incubation (SI) temperature in weeks 1 and 3 of layer embryo incubation affects their development and post-hatch adaptive capacity during infectious challenges, by using Eimeria as a model infection under normal and immediately after more challenging environmental conditions of 72 h heat exposure. Eggs (n 5 160 per treatment) were incubated at optimal (OI 5 37.88C continuously) or suboptimal eggshell temperature (36.78C, 37.88C and 38.98C in weeks 1, 2 and 3, respectively). At day 33 of age, half the chickens of each incubation treatment were exposed to 72 h heat (358C), whereas the other half remained under control conditions (218C). At day 36 of age, all chickens were inoculated with 1 ml of a phosphate buffer saline solution containing 25 000 sporulated Eimeria acervulina oocysts/ml. The adaptive response to E. acervulina was measured by BW gain and FI from days 0 to 3 post infection (p.i.), days 3 to 5 p.i. and days 5 to 7 p.i., and by oocyst production (days 4 and 7 p.i.) and lesion scores in the duodenum (day 3, 4 and 7 p.i.). Our results demonstrated that SI temperatures in weeks 1 and 3 of incubation resulted in a reduction in yolk-free BW, chick length and navel condition. Moreover, SI temperature appeared to reduce the adaptive capacity to E. acervulina. This was demonstrated by tendencies to lower FI (P 5 0.07) and BW gain (P 5 0.08), more duodenal lesions (P 5 0.09) and higher oocyst production (P 5 0.02) after inoculation of E. acervulina. Higher lesion scores and faecal oocyst numbers were especially found when suboptimal incubation was combined with heat exposure preceding the infection. In conclusion, SI layer chickens tend to be less able to cope with an infectious challenge post hatch.Keywords: layers, incubation temperature, adaptive capacity, heat exposure, Eimeria ImplicationsThis study demonstrates that suboptimal incubation temperature affects the embryonic development and post-hatch behaviour of layer hens and tends to reduce their ability to cope with an infectious challenge. These results emphasize the importance of good incubation practice for the development, health and welfare of layer hens in production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.