The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective adsorption at Cu(I) sites in a metal-organic framework. At the strongly binding Cu(I) sites (32 kJ mol−1) nuclear quantum effects result in higher adsorption enthalpies of heavier isotopes. The capture mechanism takes place most efficiently at temperatures above 80 K, when an isotope exchange allows the preferential adsorption of heavy isotopologues from the gas phase. Large difference in adsorption enthalpy of 2.5 kJ mol−1 between D2 and H2 results in D2-over-H2 selectivity of 11 at 100 K, to the best of our knowledge the largest value known to date. Combination of thermal desorption spectroscopy, Raman measurements, inelastic neutron scattering and first principles calculations for H2/D2 mixtures allows the prediction of selectivities for tritium-containing isotopologues.
Functionalization of metal-organic frameworks results in higher hydrogen uptakes owing to stronger hydrogen-host interactions. However, it has not been studied whether a given functional group acts on existing adsorption sites (linker or metal) or introduces new ones. In this work, the effect of two types of functional groups on MIL-101 (Cr) is analyzed. Thermal-desorption spectroscopy reveals that the -Br ligand increases the secondary building unit's hydrogen affinity, while the -NH2 functional group introduces new hydrogen adsorption sites. In addition, a subsequent introduction of -Br and -NH2 ligands on the linker results in the highest hydrogenstore interaction energy on the cationic nodes. The latter is attributed to a push-and-pull effect of the linkers.
The primary adsorption sites for Kr and Xe within the large-pore metal-organic framework Cu(I)-MFU-4l have been investigated by high-resolution synchrotron powder diffraction, revealing an enormous number of adsorption sites: in total, 10 crystallographically different positions for Xe and 8 positions for Kr were localized, the first five of which are located near metal atoms and the organic linker, and the remaining sites form a second adsorption layer in the pores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.