Angiosperms developed floral nectaries that reward pollinating insects. Although nectar function and composition have been characterized, the mechanism of nectar secretion has remained unclear. Here we identify SWEET9 as a nectary-specific sugar transporter in three eudicot species: Arabidopsis thaliana, Brassica rapa (extrastaminal nectaries) and Nicotiana attenuata (gynoecial nectaries). We show that SWEET9 is essential for nectar production and can function as an efflux transporter. We also show that sucrose phosphate synthase genes, encoding key enzymes for sucrose biosynthesis, are highly expressed in nectaries and that their expression is also essential for nectar secretion. Together these data are consistent with a model in which sucrose is synthesized in the nectary parenchyma and subsequently secreted into the extracellular space via SWEET9, where sucrose is hydrolysed by an apoplasmic invertase to produce a mixture of sucrose, glucose and fructose. The recruitment of SWEET9 for sucrose export may have been a key innovation, and could have coincided with the evolution of core eudicots and contributed to the evolution of nectar secretion to reward pollinators.
Three families of transporters have been identified as key players in intercellular transport of sugars: MSTs (monosaccharide transporters), SUTs (sucrose transporters) and SWEETs (hexose and sucrose transporters). MSTs and SUTs fall into the major facilitator superfamily; SWEETs constitute a structurally different class of transporters with only seven transmembrane spanning domains. The predicted topology of SWEETs is supported by crystal structures of bacterial homologs (SemiSWEETs). On average, angiosperm genomes contain ∼20 paralogs, most of which serve distinct physiological roles. In Arabidopsis, AtSWEET8 and 13 feed the pollen; SWEET11 and 12 provide sucrose to the SUTs for phloem loading; AtSWEET11, 12 and 15 have distinct roles in seed filling; AtSWEET16 and 17 are vacuolar hexose transporters; and SWEET9 is essential for nectar secretion. The remaining family members await characterization, and could play roles in the gametophyte as well as other important roles in sugar transport in the plant. In rice and cassava, and possibly other systems, sucrose transporting SWEETs play central roles in pathogen resistance. Notably, the human genome also contains a glucose transporting isoform. Further analysis promises new insights into mechanism and regulation of assimilate allocation and a new potential for increasing crop yield.
Developing plant embryos depend on nutrition from maternal tissues via the seed coat and endosperm, but the mechanisms that supply nutrients to plant embryos have remained elusive. Sucrose, the major transport form of carbohydrate in plants, is delivered via the phloem to the maternal seed coat and then secreted from the seed coat to feed the embryo. Here, we show that seed filling in Arabidopsis thaliana requires the three sucrose transporters SWEET11, 12, and 15. SWEET11, 12, and 15 exhibit specific spatiotemporal expression patterns in developing seeds, but only a sweet11;12;15 triple mutant showed severe seed defects, which include retarded embryo development, reduced seed weight, and reduced starch and lipid content, causing a "wrinkled" seed phenotype. In sweet11;12;15 triple mutants, starch accumulated in the seed coat but not the embryo, implicating SWEETmediated sucrose efflux in the transfer of sugars from seed coat to embryo. This cascade of sequentially expressed SWEETs provides the feeding pathway for the plant embryo, an important feature for yield potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.