Introduction. The investigation of the contact problems for cylindrical bodies is urgent due to the engineering contact strength analysis on shafts, cores and pipe-lines. In the present paper, a new contact problem of elastostatics on the interaction between a rigid band and an infinite two-layered cylinder, which consists of an internal continuous cylinder and an outer hollow one, with a frictionless contact between the cylinders, is studied. The outer cylindrical band of finite length is press fitted. By using a Fourier integral transformation, the problem is reduced to an integral equation with respect to the unknown contact pressure.Materials and Methods. Different combinations of linearly elastic materials of the composite cylinder are considered. Asymptotics of the symbol function of the integral equation kernel at zero and infinity is analyzed. This plays an important role for the application of the analytical solution methods. A key dimensionless geometric parameter is introduced, and a singular asymptotic technique is employed to solve the integral equation.Research Results. On the basis of the symbol function properties, a special easily factorable approximation being applicable in a wide variation range of the problem parameters is suggested. The Monte-Carlo method is used to determine the approximation parameters. The asymptotic formulas are derived both for the contact pressure, and for its integral characteristic. Calculations are made for different materials and for various relative thickness of the cylindrical layer including thin-walled layers.Discussion and Conclusions. The asymptotic solutions are effective for relatively wide bands when the contact zone length is bigger than the diameter of the composite cylinder. It is significant that the method is applicable also for those cases when the outer cylindrical layer is treated as a cylindrical shell. The asymptotic solutions can be recommended to engineers for the contact strength analysis of the elastic barrels with a flexible coating of another material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.