In this study, anion-selective exhaustive injection-sweeping (ASEI-sweeping) technique, which is a selective on-line sample concentration technique, was first proposed in microemulsion electrokinetic chromatography (MEEKC) for analyses of eight acidic phenolic compounds. In contrast to a capillary that is typically filled with nonmicellar background solution in conventional ASEI-sweeping MEKC method, in the proposed ASEI-sweeping MEEKC method, a capillary is filled with a low pH microemulsion solution (pH 2.0), and then with a short acid plug (pH 2.0, 1.9 cm) before field-amplified sample injection. This proposed design has two functions. First, the microemulsion solution that is present at the front of capillary column is able to avoid phase separation of microemulsion solution during MEEKC separation. Second, the presence of the short acid plug would effectively limit the partition behavior of acid analytes with the oil droplets in the microemulsion during field-amplified sample injection; otherwise, the stacking effect of acid analytes would be markedly reduced. This optimal ASEI-sweeping MEEKC method afforded about 96,000-fold to 238,000-fold increases in detection sensitivity in terms of peak areas without any separation efficiency loss when compared to normal MEEKC separation. Furthermore, trace levels (about 3 ng/g) of gallic acid and catechin in foods were also detected successfully by the proposed ASEI-sweeping MEEKC technique.
In this study, an on-line concentration method, ASEI (anion-selective exhaustive injection)-sweeping technology which was coupled with microemulsion EKC (MEEKC), was used to analyze and detect six catechins ((-)-epicatechin, (+)-catechin, (-)-epigallocatechin gallate, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-gallocatechin). In addition to the effects of the buffer pH and electrolyte concentration on stacking, the compositions of microemulsion (types of oil phase, and types and levels of cosurfactant) also dominated the stacking effect of catechins. In MEEKC, the effect of the type of oil in microemulsion on separation mechanism is often unclear. This study had demonstrated that the oil type in microemulsion indeed altered the affinity of oil droplets with analytes. Finally, this proposed ASEI-sweeping MEEKC method was able to detect trace level of catechins in food products that was not previously possible by a normal MEEKC method.
Five common food preservatives were analyzed by capillary electrochromatography, utilizing a methacrylate ester-based monolithic capillary as separation column. In order to optimize the separation of these preservatives, the effects of the pore size of the polymeric stationary phase, the pH and composition of the mobile phase on separation were examined. For all analytes, it was found that an increase in pore size caused a reduction in retention time. However, separation performances were greatly improved in monolithic columns with smaller pore sizes. The pH of the mobile phase had little influence on separation resolution, but a dramatic effect on the amount of sample that was needed to be electrokinetically injected into the monolithic column. In addition, the retention behaviors of these analytes were strongly influenced by the level of acetonitrile in the mobile phase. An optimal separation of the five preservatives was obtained within 7.0 min with a pH 3.0 mobile phase composed of phosphate buffer and acetonitrile 35:65 v/v. Finally, preservatives in real commercial products, including cold syrup, lotion, wine, and soy sauces, were successfully determined by the methacrylate ester-based polymeric monolithic column under this optimized condition.
Original PaperSeparation of parabens in capillary electrochromatography using poly(styrenedivinylbenzene-methacrylic acid) monolithic columnIn this study, a series of poly(styrene-divinylbenzene-methacrylic acid) monolithic capillaries was used as the separation column of CEC for the analyses of parabens in commercial pharmaceutical and cosmetic products. The results showed that the chromatographic characteristics of these analytes were strongly affected by the preparation condition of the monolithic column including monomer content, porogenic solvent composition, and polymerization time. Baseline separations were markedly sped up by lowering the polymerization time without any obvious loss of resolution. Furthermore, mobile-phase composition (pH, ACN, and electrolyte concentration) was also able to effectively improve the separation behavior. Similar to the influence of lowering the polymerization time, retention times for all analytes were significantly shortened in the CEC method by decreasing the electrolyte concentration in the mobile phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.