Abstract-This paper presents a novel small-size directional antenna design for ultrawide-band wireless body area networks/wireless personal area networks applications. The design is based on a typical slot antenna structure with an added reflector in order to achieve directionality. The effects of different antenna parameters and human body proximity on the radiation characteristics are analyzed. Antenna measurements with an optic RF setup were performed in order to characterize the small-size antenna far field radiation pattern. The different structural antenna parameters were optimized via extensive numerical simulations. Results show that for frequencies above 3.5 GHz, where the power front-to-back ratio of the directional antenna is greater than 10 dB, its impedance is nearly the same as in the free space. It is not the case neither for the omnidirectional slot antenna nor the monopole antenna next to the body. Between 3 and 6 GHz performance of the novel directional antenna, in terms of radiation efficiency and SAR values, is significantly improved compared to omnidirectional antenna designs.Index Terms-Body-worn antennas, human body, pulsed antennas, specific absorption rate (SAR), ultrawide-band (UWB), wearable antennas, wireless communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.