Ozone Monitoring Experiment-2 (GOME-2) launched on board MetOp-A and Brewer-Dobson data show that, on average, IASI overestimates the ultraviolet (UV) data by 5-6 % with the largest differences found in the southern high latitudes. The comparison with UV-visible SAOZ (Système d'Analyse par Observation Zénithale) measurements shows a mean bias between IASI and SAOZ TOCs of 2-4 % in the midlatitudes and tropics and 7 % at the polar circle. Part of the discrepancies found at high latitudes can be attributed to the limited information content in the observations due to low brightness temperatures. The comparison with ozonesonde vertical profiles (limited to 30 km) shows that on average IASI with FORLI processing underestimates O 3 by ∼ 5-15 % in the troposphere while it overestimates O 3 by ∼ 10-40 % in the stratosphere, depending on the latitude. The largest relative differences are found in the tropPublished by Copernicus Publications on behalf of the European Geosciences Union. 4328A. Boynard et al.: Seven years of IASI ozone retrievals from FORLI ical tropopause region; this can be explained by the low O 3 amounts leading to large relative errors. In this study, we also evaluate an updated version of FORLI-O3 retrieval software (v20151001), using look-up tables recalculated to cover a larger spectral range using the latest HITRAN spectroscopic database (HITRAN 2012) and implementing numerical corrections. The assessment of the new O 3 product with the same set of observations as that used for the validation exercise shows a correction of ∼ 4 % for the TOC positive bias when compared to the UV ground-based and satellite observations, bringing the overall global comparison to ∼ 1-2 % on average. This improvement is mainly associated with a decrease in the retrieved O 3 concentration in the middle stratosphere (above 30 hPa/25 km) as shown by the comparison with ozonesonde data.
Abstract. The two Global Ozone Monitoring Instrument (GOME-2) sensors operated in tandem are flying onboard EUMETSAT's (European Organisation for the Exploitation of Meteorological Satellites) MetOp-A and MetOp-B satellites, launched in October 2006 and September 2012 respectively. This paper presents the operational GOME-2/MetOp-A (GOME-2A) and GOME-2/MetOp-B (GOME-2B) total ozone products provided by the EUMETSAT Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). These products are generated using the latest version of the GOME Data Processor (GDP version 4.7). The enhancements in GDP 4.7, including the application of Brion-DaumontMalicet ozone absorption cross sections, are presented here. On a global scale, GOME-2B has the same high accuracy as the corresponding GOME-2A products. There is an excellent agreement between the ozone total columns from the two sensors, with GOME-2B values slightly lower with a mean difference of only 0.55 ± 0.29 %. First global validation results for 6 months of GOME-2B total ozone using groundbased measurements show that on average the GOME-2B total ozone data obtained with GDP 4.7 are slightly higher than, both, Dobson observations by about 2.0 ± 1.0 % and Brewer observations by about 1.0 ± 0.8 %. It is concluded that the total ozone columns (TOCs) provided by GOME-2A and GOME-2B are consistent and may be used simultaneously without introducing systematic effects, which has been illustrated for the Antarctic ozone hole on 18 October 2013. GOME-2A total ozone data have been used operationally in the Copernicus atmospheric service project MACC-II (Monitoring Atmospheric Composition and Climate -Interim Implementation) near-real-time (NRT) system since October 2013. The magnitude of the bias correction needed for assimilating GOME-2A ozone is reduced (to about −6 DU in the global mean) when the GOME-2 ozone retrieval algorithm changed to GDP 4.7.
Abstract. The three Global Ozone Monitoring Experiment-2 instruments will provide unique and long data sets for atmospheric research and applications. The complete time period will be 2007-2022, including the period of ozone depletion as well as the beginning of ozone layer recovery. Besides ozone chemistry, the GOME-2 (Global Ozone Monitoring Experiment-2) products are important e.g. for air quality studies, climate modelling, policy monitoring and hazard warnings. The heritage for GOME-2 is in the ERS/GOME and Envisat/SCIAMACHY instruments. The current Level 2 (L2) data cover a wide range of products such as ozone and minor trace gas columns (NO 2 , BrO, HCHO, H 2 O, SO 2 ), vertical ozone profiles in high and low spatial resolution, absorbing aerosol indices, surface Lambertian-equivalent reflectivity database, clear-sky and cloud-corrected UV indices and surface UV fields with different weightings and photolysis rates. The Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) processes and disseminates data 24/7. Data quality is guaranteed by the detailed review processes for the algorithms, validation of the products as well as by a continuous quality monitoring of the products and processing. This paper provides an overview of the O3M SAF project background, current status and future plans for the utilisation of the GOME-2 data. An important focus is the provision of summaries of the GOME-2 products including product principles and validation examples together with sample images. Furthermore, this paper collects references to the detailed product algorithm and validation papers.
Arctic column ozone reached record low values (∼310 DU) during March of 2011, exposing Arctic ecosystems to enhanced UV‐B. We identify the cause of this anomaly using the Oslo CTM2 atmospheric chemistry model driven by ECMWF meteorology to simulate Arctic ozone from 1998 through 2011. CTM2 successfully reproduces the variability in column ozone, from week to week, and from year to year, correctly identifying 2011 as an extreme anomaly over the period. By comparing parallel model simulations, one with all Arctic ozone chemistry turned off on January 1, we find that chemical ozone loss in 2011 is enhanced relative to previous years, but it accounted for only 23% of the anomaly. Weakened transport of ozone from middle latitudes, concurrent with an anomalously strong polar vortex, was the primary cause of the low ozone When the zonal winds relaxed in mid‐March 2011, Arctic column ozone quickly recovered.
Abstract. The main aim of this paper is to update existing sulfur dioxide (SO 2 ) emission inventories over China using modern inversion techniques, state-of-the-art chemistry transport modelling (CTM) and satellite observations of SO 2 . Within the framework of the EU Seventh Framework Programme (FP7) MarcoPolo (Monitoring and Assessment of Regional air quality in China using space Observations) project, a new SO 2 emission inventory over China was calculated using the CHIMERE v2013b CTM simulations, 10 years of Ozone Monitoring Instrument (OMI)/Aura total SO 2 columns and the pre-existing Multiresolution Emission Inventory for China (MEIC v1.2). It is shown that including satellite observations in the calculations increases the current bottom-up MEIC inventory emissions for the entire domain studied (15- The new SO 2 emission inventory is publicly available and forms part of the official EU MarcoPolo emission inventory over China, which also includes updated NO x , volatile organic compounds and particulate matter emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.