Abstract. Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The differences among the results (model diversities) for sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. Processes and parameters are identified which deserve further research.The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO 4 ), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead genCorrespondence to: C. Textor (christiane.textor@cea.fr) erally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO 4 , is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO 4 -sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO 4 , POM, and BC.The all-models-average residence time is shortest for SS with about half a day, followed by SO 4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO 4 and SS. It is the dominant sink for SO 4 , BC, and POM, and contributes about one third to the total removal of SS and DU species. For SS Published by Copernicus GmbH on behalf of the European Geosciences Union. C. Textor et al.: Diversities of aerosol life cycles within AeroComand DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and other dry deposition processes. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain.Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO 4 and BC and lowest for SS. Diversities are higher for meridional than for verti...
[1] Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions scenarios, broadly representing ''optimistic,'' ''likely,'' and ''pessimistic'' options, are compared to a base year 2000 simulation. This base case realistically represents the current global distribution of tropospheric ozone. A further set of simulations considers the influence of climate change over the same time period by forcing the central emissions scenario with a surface warming of around 0.7K. The use of a large multimodel ensemble allows us to identify key areas of uncertainty and improves the robustness of the results. Ensemble mean changes in tropospheric ozone burden between 2000 and 2030 for the 3 scenarios range from a 5% decrease, through a 6% increase, to a 15% increase. The intermodel uncertainty (±1 standard deviation) associated with these values is about ±25%. Model outliers have no significant influence on the ensemble mean results. Combining ozone and methane changes, the three scenarios produce radiative forcings of À50, 180, and 300 mW m À2, compared to a CO 2 forcing over the same time period of 800-1100 mW m À2 . These values indicate the importance of air pollution emissions in short-to medium-term climate forcing and the potential for stringent/lax control measures to improve/worsen future climate forcing. The model sensitivity of ozone to imposed climate change varies between models but modulates zonal mean mixing ratios by ±5 ppbv via a variety of feedback mechanisms, in particular those involving water vapor and stratosphere-troposphere exchange. This level of climate change also reduces the methane lifetime by around 4%.
[1] Understanding the surface O 3 response over a ''receptor'' region to emission changes over a foreign ''source'' region is key to evaluating the potential gains from an international approach to abate ozone (O 3 ) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O 3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O 3 precursors, NO x , NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O 3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O 3 responses to NO x , CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale ''import sensitivity'' as the ratio of the O 3 response to the 20% reductions in foreign versus 1 ''domestic'' (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O 3 response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O 3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O 3 levels are typically highest and by the weaker relative response of annual incidences of daily maximum 8-h average O 3 above 60 ppb to emission reductions in a foreign region (<10-20% of that to domestic) as compared to the annual mean response (up to 50% of that to domestic). Applying the ensemble annual mean results to changes in anthropogenic emissions from 1996 to 2002, we estimate a Northern Hemispheric increase in background surface O 3 of about 0.1 ppb a À1 , at the low end of the 0.1-0.5 ppb a À1 derived from observations. From an additional simulation in which global atmospheric methane was reduced, we infer that 20% reductions in anthropogenic methane emissions from a foreign source region would yield an O 3 response in a receptor region that roughly equals that produced by combined 20% reductions of anthropogenic NO x , NMVOC, and CO emissions from the foreign source region.
Emission generated by the international merchant fleet has been suggested to represent a significant contribution to the global anthropogenic emissions. To analyze the impacts of these emissions, we present detailed model studies of the changes in atmospheric composition of pollutants and greenhouse compounds due to emissions from cargo and passenger ships in international trade. Global emission inventories of NOx, SO2, CO, CO2, and volatile organic compounds (VOC) are developed by a bottom‐up approach combining ship‐type specific engine emission modeling, oil cargo VOC vapor modeling, alternative global distribution methods, and ship operation data. Calculated bunker fuel consumption is found in agreement with international sales statistics. The Automated Mutual‐assistance Vessel Rescue system (AMVER) data set is found to best reflect the distributions of cargo ships in international trade. A method based on the relative reporting frequency weighted by the ship size for each vessel type is recommended. We have exploited this modeled ship emissions inventory to estimate perturbations of the global distribution of ozone, methane, sulfate, and nitrogen compounds using a global 3‐D chemical transport model with interactive ozone and sulfate chemistry. Ozone perturbations are highly nonlinear, being most efficient in regions of low background pollution. Different data sets (e.g., AMVER, The Comprehensive Ocean‐Atmosphere Data Set (COADS)) lead to highly different regional perturbations. A maximum ozone perturbation of approximately 12 ppbv is obtained in the North Atlantic and in the North Pacific during summer months. Global average sulfate loading increases with 2.9%, while the increase is significantly larger over parts of western Europe (up to 8%). In contrast to the AMVER data, the COADS data give particularly large enhancements over the North Atlantic. Ship emissions reduce methane lifetime by approximately 5%. CO2 and O3 give positive radiative forcing (RF), and CH4 and sulfate give negative forcing. The total RF is small (0.01–0.02 W/m2) and connected with large uncertainties. Increase in acidification is 3–10% in certain coastal areas. The approach presented here is clearly useful for characterizing the present impact of ship emission and will be valuable for assessing the potential effect of various emission‐control options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.