Prostate cancer is a leading cause of death among men but its genomic characterization and best therapeutic strategy are still under debate. The Genomic Fabric Paradigm (GFP) considers the transcriptome as a multi-dimensional mathematical object subjected to a dynamic set of expression correlations among the genes. Here, GFP is applied to gene expression profiles of three (one primary, and two secondary) cancer nodules and the surrounding normal tissue from a surgically removed prostate tumor. GFP was used to determine the regulation and rewiring of the P53 signaling, apoptosis, prostate cancer and several other pathways involved in survival and proliferation of the cancer cells. Genes responsible for the block of differentiation, evading apoptosis, immortality, insensitivity to anti-growth signals, proliferation, resistance to chemotherapy and sustained angiogenesis were found as differently regulated in the three cancer nodules with respect to the normal tissue. The analysis indicates that even histo-pathologically equally graded cancer nodules from the same tumor have substantially different transcriptomic organizations, raising legitimate questions about the validity of meta-analyses comparing large populations of healthy and cancer humans. The study suggests that GFP may provide a personalized alternative to the biomarkers’ approach of cancer genomics.
Glaucoma is a multifactorial neurodegenerative disease, characterized by degeneration of the retinal ganglion cells (RGCs). There has been little progress in developing efficient strategies for neuroprotection in glaucoma. We profiled the retina transcriptome of Lister Hooded rats at 2 weeks after optic nerve crush (ONC) and applied systems biology approaches to better understand the molecular mechanisms related with the retinal remodeling after induction of RGC degeneration. We observed a higher Relative Expression Variability after ONC. Gene expression stability was used as a measure of transcription control and disclosed a robust reduction in the number of very stably expressed genes. Enrichment analysis showed that Complement cascade and Notch signaling pathway were the main affected pathways after ONC. To expand our studies of these two pathways, we examined the coordination of gene expressions within each pathway and with the entire transcriptome. ONC increased the number of synergistically coordinated pairs of genes and the number of similar profiles. This study provided novel findings beyond the regulation of individual gene expression and disclosed changes in the control of expression by Complement cascade and Notch signaling functional pathways important for both RGC degeneration and remodeling of the retinal tissue after ONC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.