Cardiotoxicity is a feared side effect that may limit the clinical use of anthracyclines. It may indeed affect the quality of life and survival of patients with cancer, regardless of oncological prognosis. This paper provides an overview of anthracycline-induced cardiotoxicity in terms of definition, classification, incidence, risk factors, possible mechanisms, diagnosis, and treatment. We also report effective strategies for preventing cardiotoxicity. In addition, we discuss limiting current approaches, the need for a new classification, and early cardiotoxicity detection and treatment. Probably, anthracycline-induced cardiotoxicity is a continuous phenomenon that starts from myocardial cell injury; it is followed by left ventricular ejection fraction (LVEF) and, if not diagnosed and cured early, progressively leads to symptomatic heart failure. Anthracycline-induced cardiotoxicity can be detected at a preclinical phase. The role of biomarkers, in particular troponins, in identifying subclinical cardiotoxicity and its therapy with angiotensin-converting enzyme inhibitors (mainly enalapril) to prevent LVEF reduction is a recognized and effective strategy. If cardiac dysfunction has already occurred, partial or complete LVEF recovery may still be obtained in case of early detection of cardiotoxicity and prompt heart failure treatment.
Aim We combined cardiopulmonary exercise test (CPET) and exercise stress echocardiography (ESE) to identify early haemodynamic and metabolic alterations in patients with hypertension (HT) with and without heart failure with preserved ejection fraction (HFpEF). Methods and results Fifty stable HFpEF‐HT outpatients (mean age 68 ± 14 years) on optimal medical therapy, 63 well‐controlled HT subjects (mean age 63 ± 11 years) and 32 age and sex‐matched healthy controls (mean age 59 ± 15 years) underwent a symptom‐limited graded ramp bicycle CPET‐ESE. The acquisition protocol included left ventricular cardiac output, global longitudinal strain, E/e′, peak oxygen consumption (VO2), non‐invasive arterial–venous oxygen content difference (AVO2diff) and lung ultrasound B‐lines. There was a decline in peak VO2 from controls (24.4 ± 3 mL/min/kg) to HFpEF‐HT (15.2 ± 2 mL/min/kg), passing through HT (18.7 ± 2 mL/min/kg; P < 0.0001). HFpEF‐HT displayed a lower peak cardiac output (9.8 ± 0.9 L/min) compared to HT (12.6 ± 1.0 L/min; P = 0.02) and controls (13.3 ± 1.0 L/min; P = 0.01). Peak AVO2diff was reduced in HFpEF‐HT and HT (13.3 ± 2 and 13.5 ± 2 mL/dL vs. controls: 16.9 ± 2 mL/dL; P < 0.0001). A different left ventricular contractility was observed among groups, expressed as low‐load global longitudinal strain (−16.8 ± 5% in HFpEF‐HT, −18.2 ± 3% in HT, and 20.9 ± 3% in controls; P < 0.0001), and distribution of E/e′ and B‐lines [HFpEF‐HT: 13.7 ± 3 and 16, interquartile range (IQR) 10–22; HT: 9.5 ± 2 and 8, IQR 4–10; controls: 6.2 ± 2 and 0, IQR 0–2; P < 0.0001]. Conclusions Reduced peak VO2 values in HT with and without HFpEF may be the result of decreased AVO2diff. CPET‐ESE can also identify mild signs of left ventricular systo‐diastolic dysfunction and pulmonary congestion, promoting advances in personalized therapy.
Two methods are currently available for left atrial (LA) strain measurement by speckle tracking echocardiography, with two different reference timings for starting the analysis: QRS (QRS-LASr) and P wave (P-LASr). The aim of MASCOT HIT study was to define which of the two was more reproducible, more feasible, and less time consuming. In 26 expert centers, LA strain was analyzed by two different echocardiographers (young vs senior) in a blinded fashion. The study population included: healthy subjects, patients with arterial hypertension or aortic stenosis (LA pressure overload, group 2) and patients with mitral regurgitation or heart failure (LA volume–pressure overload, group 3). Difference between the inter-correlation coefficient (ICC) by the two echocardiographers using the two techniques, feasibility and analysis time of both methods were analyzed. A total of 938 subjects were included: 309 controls, 333 patients in group 2, and 296 patients in group 3. The ICC was comparable between QRS-LASr (0.93) and P-LASr (0.90). The young echocardiographers calculated QRS-LASr in 90% of cases, the expert ones in 95%. The feasibility of P-LASr was 85% by young echocardiographers and 88% by senior ones. QRS-LASr young median time was 110 s (interquartile range, IR, 78-149) vs senior 110 s (IR 78-155); for P-LASr, 120 s (IR 80-165) and 120 s (IR 90-161), respectively. LA strain was feasible in the majority of patients with similar reproducibility for both methods. QRS complex guaranteed a slightly higher feasibility and a lower time wasting compared to the use of P wave as the reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.