The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.
RFamide peptides 43RFa and 26RFa have been shown to promote food intake and to exert different peripheral actions through G-protein-coupled receptor 103 (GPR103) binding. Moreover, 26RFa was found to inhibit pancreatic insulin secretion, whereas the role of 43RFa on b-cell function is unknown, as well as the effects of both peptides on b-cell survival. Herein, we investigated the effects of 43RFa and 26RFa on survival and apoptosis of pancreatic b-cells and human pancreatic islets. In addition, we explored the role of these peptides on insulin secretion and the underlying signaling mechanisms. Our results show that in INS-1E b-cells and human pancreatic islets both 43RFa and 26RFa prevented cell death and apoptosis induced by serum starvation, cytokine synergism, and glucolipotoxicity, through phosphatidylinositol 3-kinase/Akt-and extracellular signal-related kinase 1/2-mediated signaling. Moreover, 43RFa promoted, whereas 26RFa inhibited, glucose-and exendin-4-induced insulin secretion, through Ga s and Ga i/o proteins, respectively. Inhibition of GPR103 expression by small interfering RNA blocked 43RFa insulinotropic effect, but not the insulinostatic action of 26RFa. Finally, 43RFa, but not 26RFa, induced cAMP increase and glucose uptake. In conclusion, because of their survival effects along with the effects on insulin secretion, these findings suggest potential for 43RFa and 26RFa as therapeutic targets in the treatment of diabetes.Pancreatic b-cell mass plays an essential role in glucose homeostasis. The reduced capacity of the endocrine pancreas to maintain an adequate insulin secretion, due to decreased b-cell mass and function, underlies both type 1 and type 2 diabetes (1). In type 1 diabetes, immunemediated release of inflammatory cytokines such as tumor necrosis factor-a (TNF-a), interferon-g (IFN-g), and interleukin-1b (IL-1b) has been implicated in b-cell apoptosis (2). In type 2 diabetes, b-cell apoptosis results from the combined action of increased plasma glucose/free fatty acid levels (glucolipotoxicity) (3) and cytokines (4). Therefore, identifying molecules capable of increasing pancreatic b-cell survival may be crucial for the treatment and prevention of diabetes.RFamide-related peptides constitute a family of biologically active peptides terminating in arginine-phenylalanine-amide (Arg-Phe-NH 2 ) at their C-terminus. They include a 26-amino acid RFamide peptide (26RFa), which was isolated
The ghrelin gene products, namely acylated ghrelin (AG), unacylated ghrelin (UAG), and obestatin (Ob), were shown to prevent pancreatic beta-cell death and to improve beta-cell function under treatment with cytokines, which are major cause of beta-cell destruction in diabetes. Moreover, AG had been described previously to prevent streptozotocin (STZ)-induced diabetes in rats; however, the effect of either UAG or Ob has never been examined in this context. In the present study, we investigated the potential of UAG and Ob to increase islet beta-cell mass and to reduce diabetes at adult age in STZ-treated neonatal rats. One-day-old rats were injected with STZ and subsequently administered with either AG, UAG or Ob for 7 days. On day 70, plasma glucose levels, plasma and pancreatic insulin levels, pancreatic islet area and number, insulin and pancreatic/duodenal homeobox-1 (Pdx1) gene expression, and antiapoptotic BCL2 protein expression were determined. Similarly to AG, both UAG and Ob counteracted STZ-induced high glucose levels and improved plasma and pancreatic insulin levels, which were reduced by the diabetogenic compound. UAG and Ob increased islet area, islet number, and beta-cell mass with respect to STZ treatment alone. Finally, in STZ-treated animals, UAG and Ob up-regulated insulin and Pdx1 mRNA and increased the expression of BCL2 similarly to AG. Taken together, our results suggest that in STZ-treated newborn rats, UAG and Ob improve glucose metabolism and preserve islet cell mass, granting a therapeutic potential in medical conditions associated with impaired beta-cell function.
Extracellular vesicles (EVs) are implicated in the crosstalk between adipocytes and other metabolic organs, and an altered biological cargo has been observed in EVs from human obese adipose tissue (AT). Yet, the role of adipocyte-derived EVs in pancreatic β cells remains to be determined. Here, we explored the effects of EVs released from adipocytes isolated from both rodents and humans and human AT explants on survival and function of pancreatic β cells and human pancreatic islets. EVs from healthy 3T3-L1 adipocytes increased survival and proliferation and promoted insulin secretion in INS-1E β cells and human pancreatic islets, both those untreated or exposed to cytokines or glucolipotoxicity, whereas EVs from inflamed adipocytes caused β cell death and dysfunction. Human lean adipocyte-derived EVs produced similar beneficial effects, whereas EVs from obese AT explants were harmful for human EndoC-βH3 β cells. We observed differential expression of miRNAs in EVs from healthy and inflamed adipocytes, as well as alteration in signaling pathways and expression of β cell genes, adipokines, and cytokines in recipient β cells. These in vitro results suggest that, depending on the physiopathological state of AT, adipocyte-derived EVs may influence β cell fate and function.
Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with exposure to asbestos, with poor prognosis and no effective therapies. The strong inhibitory activities of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different experimental human cancers, including lung cancer; however, their role in MPM remains unknown. We assessed the effects of the GHRH antagonists MIA-602 and MIA-690 in vitro in MPM cell lines and in primary MPM cells, and in vivo in MPM xenografts. GHRH, GHRH receptor, and its main splice variant SV1 were found in all the MPM cell types examined. In vitro, MIA-602 and MIA-690 reduced survival and proliferation in both MPM cell lines and primary cells and showed synergistic inhibitory activity with the chemotherapy drug pemetrexed. In MPM cells, GHRH antagonists also regulated activity and expression of apoptotic molecules, inhibited cell migration, and reduced the expression of matrix metalloproteinases. These effects were accompanied by impairment of mitochondrial activity and increased production of reactive oxygen species. In vivo, s.c. administration of MIA-602 and MIA-690 at the dose of 5 μg/d for 4 wk strongly inhibited the growth of MPM xenografts in mice, along with reduction of tumor insulin-like growth factor-I and vascular endothelial growth factor. Overall, these results suggest that treatment with GHRH antagonists, alone or in association with chemotherapy, may offer an approach for the treatment of MPM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.