This paper proposes an inverse structural modification method for the assignment of antiresonances in undamped vibrating systems by modifying the inertial and elastic properties of the existing degrees of freedom of the original system. Hence, no additional degrees of freedom are added to the system. The problem is formulated as an eigenstructure assignment approach since such a novel formulation is suitable for complex systems, such as those modeled through finite elements. Indeed, these systems are difficult to handle with the methods already proposed in the literature. Additionally, the proposed approach is suitable for both point and cross receptances. Assignment is cast as a constrained non-convex non-linear minimization problem and the proposed solving strategy is based on the homotopy optimization approach. The method effectiveness is shown through three meaningful test cases.
Resonant vibration generators, such as vibratory feeders or ultrasonic sonotrodes, are often employed in manufacturing to generate harmonic vibrations with suitable amplitude, spatial shape, and frequency, in order to meet the process requirements. These underactuated systems are usually excited in open loop by few actuators, and therefore, it is not ensured that the desired response is correctly achieved, since the feasible motions should belong to the subset of the allowable motions. To achieve the closest approximation of the desired vibrations, some new solutions are here proposed. The first strategy is the optimal shaping of the harmonic forces exerted by the actuators, by solving an inverse dynamic problem through a coordinate transformation and the projection of the desired response onto the subspace of the allowable motion. By exploiting the formulation of such a subspace, a second approach that involves concurrently both the force shaping and the modification of the inertial and elastic system parameters is proposed. The idea of this approach is to exploit the modification of the elastic and inertial parameters to properly shape the allowable subspace in such a way that it spans the desired response. A solution method is developed, and analytical sensitivity analysis is proposed to choose the design variables. Validation is proposed through a linear vibratory feeder with a long flexible tray, taken from the literature. The results show the effectiveness of the proposed strategies that lead to a very precise approximation of the desired response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.