Preclinical studies of tissue-engineered heart valves (TEHVs) showed retraction of the heart valve leaflets as major failure of function mechanism. This retraction is caused by both passive and active cell stress and passive matrix stress. Cell-mediated retraction induces leaflet shortening that may be counteracted by the hemodynamic loading of the leaflets during diastole. To get insight into this stress balance, the amount and duration of stress generation in engineered heart valve tissue and the stress imposed by physiological hemodynamic loading are quantified via an experimental and a computational approach, respectively. Stress generation by cells was measured using an earlier described in vitro model system, mimicking the culture process of TEHVs. The stress imposed by the blood pressure during diastole on a valve leaflet was determined using finite element modeling. Results show that for both pulmonary and systemic pressure, the stress imposed on the TEHV leaflets is comparable to the stress generated in the leaflets. As the stresses are of similar magnitude, it is likely that the imposed stress cannot counteract the generated stress, in particular when taking into account that hemodynamic loading is only imposed during diastole. This study provides a rational explanation for the retraction found in preclinical studies of TEHVs and represents an important step towards understanding the retraction process seen in TEHVs by a combined experimental and computational approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.