Vanadium(IV) magnetic centers are prime candidates as molecular quantum information units. One of the longstanding problems is to obtain an extendable scaffold that transmits the magnetic interaction to a degree usable for quantum processing, and allows upscaling to multiple centers, while preserving a sufficiently long coherence time. Here, we show that fused porphyrins allow tailored scaffolding of vanadyl quantum units, with an almost flat conjugated π-system that offers substantial advantages for communication between vanadyl ions, leading to the long spin-lattice (T1 = 30 ms) and coherence (Tm = 5.5 µs) times. The antiferromagnetic exchange coupling in these vanadyl dimers (J = 1 GHz) is stronger than the hyperfine interaction, resulting in complex EPR spectra in which both unpaired electrons couple equally to both I = 7/2 51V nuclei. Isolation of the syn- and anti-isomers, with vanadyls on the same or opposite sides of the con-jugated channel, showcases the sensitivity of quantum units to different configurational environments, and offers a way to tune the inter-action in poly-porphyrin systems by controlling the stereochemistry.
Vanadium(IV) magnetic centers are prime candidates as molecular quantum units. One longstanding question is how to obtain a scaffold that connects multiple centers and allows two communication modalities: magnetic and electronic. We have synthesized and studied a selection of vanadyl porphyrin dimers, as models of the most synthetically accessible linear porphyrin arrays. We show that a strongly π-conjugated backbone places the magnetic system in the strong coupling regime and protects the quantum coherence against electron pair flip-flop processes at low temperatures (<10 K). This result is a fundamental step towards the design of molecular materials for single-molecule devices controlled by microwaves with electrical readout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.