Smart grid systems have become popular and necessary for the development of a sustainable power grid. These systems use different technologies to provide optimized services to the users of the network. Regarding computing, these systems optimize electrical services by processing a large amount of the data generated. However, privacy and security are essential in this kind of system. With a large amount of data generated, it is necessary to protect the privacy of users, because this data may reveal the users’ personal information. Today, blockchain technology has proven to be an efficient architecture for solving privacy and security problems in different scenarios. Over the years, different blockchain platforms have emerged, attempting to solve specific problems in different areas. However, the use of different platforms fragmented the market, which was no different in the smart grid scenario. This work proposes a blockchain architecture that uses sidechains to make the system scalable and adaptable. We used three blockchains to ensure privacy, security, and trust in the system. To universalize the proposed solution, we used the Open Smart Grid Protocol and smart contracts. The results show that architecture security and privacy are guaranteed, making it feasible for implementation in real systems; although scalability issues regarding the storage of the data generated still exist.
Since the early 2000s, life in cities has changed significantly due to the Internet of Things (IoT). This concept enables developers to integrate different devices collecting, storing, and processing a large amount of data, enabling new services to improve various professional and personal activities. However, privacy issues arise with a large amount of data generated, and solutions based on blockchain technology and smart contract have been developed to address these issues. Nevertheless, several issues must still be taken into account when developing blockchain architectures aimed at the IoT scenario because security flaws still exist in smart contracts, mainly due to the lack of ease when building the code. This article presents a blockchain storage architecture focused on license plate recognition (LPR) systems for smart cities focusing on privacy, performance, and security. The proposed architecture relies on the Ethereum platform. Each smart contract matches the privacy preferences of a license plate to be anonymized through public encryption. The storage of data captured by the LPR system can only be done if the smart contract enables it. However, in the case of motivation foreseen by the legislation, a competent user can change the smart contract and enable the storage of the data captured by the LPR system. Experimental results show that the performance of the proposed architecture is satisfactory, regarding the scalability of the built private network. Furthermore, tests on our smart contract using security and structure analysis tools on the developed script demonstrate that our solution is fraud-proof. The results obtained in all experiments bring evidence that our architecture is feasible to be used in real scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.