Epithelial ovarian cancer (EOC), the leading cause of death from gynecological malignancy, is a poorly understood disease. The typically advanced presentation of EOC with loco-regional dissemination in the peritoneal cavity and the rare incidence of visceral metastases are hallmarks of the disease. These features relate to the biology of the disease, which is a principal determinant of outcome. EOC arises as a result of genetic alterations sustained by the ovarian surface epithelium (OSE; ref. 3). The causes of these changes are unknown but are manifest by activation of oncogenes and inactivation of tumor-suppressor genes (TSGs). Our analysis of loss of heterozygosity at 11q25 identified OPCML (also called OBCAM), a member of the IgLON family of immunoglobulin (Ig) domain-containing glycosylphosphatidylinositol (GPI)-anchored cell adhesion molecules, as a candidate TSG in EOC. OPCML is frequently somatically inactivated in EOC by allele loss and by CpG island methylation. OPCML has functional characteristics consistent with TSG properties both in vitro and in vivo. A somatic missense mutation from an individual with EOC shows clear evidence of loss of function. These findings suggest that OPCML is an excellent candidate for the 11q25 ovarian cancer TSG. This is the first description to our knowledge of the involvement of the IgLON family in cancer.
The omega-3 fatty acid ethanolamides, docosahexaenoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA), displayed greater anti-proliferative potency than their parent omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in LNCaP and PC3 prostate cancer cells. DHEA and EPEA activated cannabinoid CB(1) and CB(2) receptors in vitro with significant potency, suggesting that they are endocannabinoids. Both LNCaP and PC3 cells expressed CB(1) and CB(2) receptors, and the CB(1)- and CB(2)-selective antagonists, AM281 and AM630, administered separately or together, reduced the anti-proliferative potencies of EPEA and EPA but not of DHEA or DHA in PC3 cells and of EPA but not of EPEA, DHEA or DHA in LNCaP cells. Even so, EPEA and EPA may not have inhibited PC3 or LNCaP cell proliferation via cannabinoid receptors since the anti-proliferative potency of EPEA was well below the potency it displayed as a CB(1) or CB(2) receptor agonist. Indeed, these receptors may mediate a protective effect because the anti-proliferative potency of DHEA in LNCaP and PC3 cells was increased by separate or combined administration of AM281 and AM630. The anandamide-metabolizing enzyme, fatty acid amide hydrolase (FAAH), was highly expressed in LNCaP but not PC3 cells. Evidence was obtained that FAAH metabolizes EPEA and DHEA and that the anti-proliferative potencies of these ethanolamides in LNCaP cells can be enhanced by inhibiting this enzyme. Our findings suggest that the expression of cannabinoid receptors and of FAAH in some tumour cells could well influence the effectiveness of DHA and EPA or their ethanolamide derivatives as anticancer agents.
Docetaxel is a chemotherapy drug to treat breast cancer, however as with many chemotherapeutic drugs resistance to docetaxel occurs in 50% of patients, and the underlying molecular mechanisms of drug resistance are not fully understood. Gene regulation through microRNAs (miRNA) has been shown to play an important role in cancer drug resistance. By directly targeting mRNA, miRNAs are able to inhibit genes that are necessary for signalling pathways or drug induced apoptosis rendering cells drug resistant. This study investigated the role of differential miRNA expression in two in vitro breast cancer cell line models (MCF-7, MDA-MB-231) of acquired docetaxel resistance. MiRNA microarray analysis identified 299 and 226 miRNAs altered in MCF-7 and MDA-MB-231 docetaxel-resistant cells, respectively. Docetaxel resistance was associated with increased expression of miR-34a and miR-141 and decreased expression of miR-7, miR-16, miR-30a, miR-125a-5p, miR-126. Computational target prediction revealed eight candidate genes targeted by these miRNAs. Quantitative PCR and western analysis confirmed decreased expression of two genes, BCL-2 and CCND1, in docetaxel-resistant cells, which are both targeted by miR-34a. Modulation of miR-34a expression was correlated with BCL-2 and cyclin D1 protein expression changes and a direct interaction of miR-34a with BCL-2 was shown by luciferase assay. Inhibition of miR-34a enhanced response to docetaxel in MCF-7 docetaxel-resistant cells, whereas overexpression of miR-34a conferred resistance in MCF-7 docetaxel-sensitive cells. This study is the first to show differences in miRNA expression, in particular, increased expression of miR-34a in an acquired model of docetaxel resistance in breast cancer. This serves as a mechanism of acquired docetaxel resistance in these cells, possibly through direct interactions with BCL-2 and CCND1, therefore presenting a potential therapeutic target for the treatment of docetaxel-resistant breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.